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ABSTRACT 

SYNTHESIS AND ANALYSIS OF CARBON-TRANSITION METAL OXIDE COMPOSITES  

 

by 

Binod Manandhar 

 

The University of Wisconsin-Milwaukee, 2016 

Under the Supervision of Professor Carol J. Hirschmugl 

 

Graphene, a two-dimensional honeycomb structure of carbon due to its high electrical 

and thermal conductivity, and high specific surface area, is an excellent candidate for nano-

electronics and energy storage. However, it is very difficult and expensive to produce a single 

layered graphene by the traditional method of mechanical exfoliation of highly oriented pyrolytic 

graphite (HOPG). It is mainly manufactured by chemical vapor deposition (CVD) or more 

economically by chemical exfoliation of graphite by Hummer’s modified method. But there is a 

major disadvantage in using the chemical exfoliation, instead of forming single layer of pure 

graphene, a non-stoichiometric and insulating graphene oxide (GO) is formed. GO further needs 

to be reduced into graphene by either chemical or thermal method. In our work, we have 

synthesized and evaluated several compositions of transition metal oxides and carbon based 

materials. The structure and composition of materials are determined from diffraction and 

absorption experimental results. The diffraction techniques applied for characterization of carbon 

transitional metal oxides nanocomposites are selected area electron diffraction and powder x-ray 

diffraction. Absorption experiments used during experiments are Infrared absorption 
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spectroscopy, UV-Vis absorption spectroscopy and X-ray absorption spectroscopy (including X-

ray absorption near edge structure and Extended X-ray absorption fine structure). 
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Chapter 1 Background and Introduction 

1.1 Organization of the Dissertation 

Chapter 1 discusses about literature review or work that had been performed before I started my 

research, brief introduction of materials used in the experiment and motivations for my research 

work. Chapter 2 focuses on different instrumentations and methods used in research with some 

theory. Chapter 3 and 4 discusses about the characterization of two precursor material that were 

used in experiment. Chapter 5 is on formation of graphene and graphene monoxide on 

amorphous lacey carbon. Chapter 6 discusses about the formation and characterization of 

nanocomposite of reduced graphene oxide and graphene monoxide in milligram scale. Chapter 7 

discusses formation of nanocomposite of molybdenum dioxide and reduced graphene in 

milligram scale. At the end, in chapter 8, I have discussed about in situ formation of graphene 

monoxide from mixture chromium dioxide and graphene oxide by electron bombardment. 

1.2 Crystalline Allotropic forms of carbon 

Carbon is one of the most abundantly found element in the earth, both in free state and in 

compound state with oxygen and hydrogen etc. It is non-metallic element with atomic number 6. 

Its position in periodic table is IVA which is also the group of elements like silicon (Si) and 

germanium (Ge). Semiconductors made from Si and Ge are of great importance in modern 

electronics. Due to its small size and 4 valence electrons having similar energies, their 

wavefunctions mix easily, facilitating hybridization of their orbitals. This unique ability to 
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hybridize sets apart from other elements and allows carbon to form 0D, 1D, 2D and 3D 

structures (Saito, Dresselhaus et al. 1998) 

1.2.1 Diamond 

Diamond (similar to Si and Ge) is face centered cubic (𝐹𝑑3̅m) space group. The primitive basis 

of diamond has two identical atoms at coordinates (000) and (
1

4
,
1

4
,
1

4
). As conventional unit cube 

of fcc lattice contains 4 lattice points, the conventional unit cube of diamond structure contains 

2 x 4 = 8 atoms [1]. Strong covalent bond formed due to sp3 hybridization of orbitals of carbon 

atoms make it the hardest crystal in the earth. Due to its hardness it is mostly used as cutting 

material and due to its high refractive index it is used as gemstone. Though it has structure 

similar to that of Si and Ge, a pure diamond is insulator as it's bandgap is 5.5 eV. However, it’s 

one of the best conductors of heat due to its strong covalent bond and low phonon scattering (5 

times higher than copper) [2]. 

 

Figure 1: Unit cell of diamond. Each carbon atom bonded with 4 neighboring carbon atoms with sp3 hybridization. 
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1.2.2 Graphite 

It is layers of hexagonal carbon sheets that are stacked on top of each other. Each carbon in 

hexagonal sheet are sp2 bonded with separation of 1.42 Å and each layers are separated by a 

distance of 3.35 Å. Each carbon atom in the plane is covalently bonded with another 3 carbons 

also in plane by sp2 hybridization of orbitals. Hence out of 4 valence electron of carbon, the 

fourth electron is free which makes graphite electrically conductive. The bonding between layers 

of carbon is weak van der Waals, which allows layers of graphite to slide over each other and 

also makes layers to exfoliate easily. However, sp2 bonding in between atoms in the same layer 

of graphite are even more stronger than sp3 bonding in diamond. Graphite is used as lubricant 

and electrodes. 

 

Figure 2: Crystalline graphite structure with AB stacking. Each carbon in plane bonded with another three carbons with sp2 

hybridization 

1.2.3  Graphene 

In 2004, Konstantin Novoselov, Andre Geim and their collaborators, mechanically exfoliated a 
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single layer of graphite, transferred to substrate and did electrical measurement. This single layer 

of honeycomb structure of carbon in which each carbon atom is bonded with 3 another carbon 

atom in a plane with strong σ-bond is called graphene. 

1.2.3.1 Structure of graphene 

Graphene is a two dimensional, a single atomic layer of sp2-bonded carbon atoms in which each 

carbon atoms are separated from another by 1.42 Å and a unit cell of graphene has lattice vectors 

of 2.46 Å (a=b= 2.46 Å) and angle between them equal to 120°(or 60°). Stability of graphene 

can be attributed to tightly packed carbon atoms with the σ-bonding (strongest bond know so far 

between any two atoms) between them or sp2 hybridization. sp2 hybridization (σ bonding) is due 

to combination of s, px and py orbitals of carbon atoms. The final pz electron makes up the π-

bond. The π-bond hybridize together to form the π-band and π*- bands. These bands are 

responsible for most of graphene's notable electronic properties, vis the half filed band that 

permits free-moving electrons [3]. 
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Figure 3: Honeycomb structure of graphene. Each carbon atom bonded with another 3 carbon atoms with sp2 hybridization. 

1.2.3.2 Properties of graphene 

It is ultra-light yet immensely tough, 200 times stronger than steel but incredibly flexible, 

thinnest material, transparent and very good conductor of heat and electricity but it acts as a 

perfect barrier for any molecule to pass through it. 
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Figure 4: C60 fullerene molecules, carbon nanotubes, and graphite can all be thought of as being formed from graphene sheets, 
i.e. single layers of carbon atoms arranged in a honeycomb lattice. [4] 

 

3D Graphite can be considered as a stacking of graphene sheets in fig (2), stacked together by 

much weaker van der Waals force compared to covalent force which binds together C-atoms in 

graphene plane. In 1985 Robert Curl, Harold Kroto and Richard Smalley discovered 0D 

graphitic allotrope C60 (fullerenes) [5], in which a graphene sheet is crumbled forming a sphere 

of a graphene similar to a football, with 60 vertices and 32 faces, 12 of which are pentagonal and 

20 hexagonal. And when single of multilayer of graphene rolled up, a single-wall or multi-wall 

carbon nanotube is formed with diameter of several nm [6].  
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Electronic structure and the linear dispersion relation in graphene were predicted by P.R. 

Wallace in 1947 [7]. But it was presumed that a single atomic layer of crystal is 

thermodynamically unstable at any finite temperature and there were doubt that a single layer of 

graphene can ever exist. In 2004, Geim and Novoselov, micro-mechanically exfoliated HOPG 

and showed 2D crystal of graphene were found to exhibit in high crystal quality where charge 

carriers can travel thousands of interatomic distances without scattering [8] [9] [10]. 

1.2.3.3 Electronic structure of graphene 

Fermi surface of graphene is characterized by six double cones as shown in fig 5). In intrinsic 

graphene Fermi level is situated at the connection points of these cones. Since density of states of 

the material is zero at that point, the electrical conductivity of intrinsic graphene is quite low and 

is of the order of the conductance quantum 𝜎 ∼ 𝑒2/ℎ  . However, the Fermi energy can be 

changed by an electric field so that the material becomes either n-doped (with electrons) or p-

doped (with holes) depending on the polarity of the applied field [11]. It can also be doped by 

adsorbing on its surface (for example water or ammonia) [11]. The electrical conductivity of 

doped graphene is potentially quite higher than even copper at room temperature [11]. The zero 

bandgap of graphene limits its use in field-effect transistors in nanoelectronics, so the p-type 

semiconducting reduced graphene oxide (r-GO) is an alternating route [12]. 

 

Close to the Fermi level the dispersion relation for electrons and holes is linear. Since the 

effective masses are given by the curvature of the energy bands, this corresponds to zero 

effective mass. The equation describing the excitations in graphene is formally identical to the 

Dirac equation for massless fermions which travel at a constant speed. The connection between 
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points of the cones are therefore called Dirac points.  

 

Figure 5: The energy, E, for the excitations in graphene as a function of the wave numbers, kx and ky, in the x and y directions. 
The black line represents the Fermi energy for an undoped graphene crystal. Close to this Fermi level the energy spectrum is 

characterized by six double cones where the dispersion relation (energy versus momentum, ℏk) is linear. This corresponds to 
massless excitations [11]. 

1.3 Graphene oxide (GO) 

Well before the discovery of graphene in 2004, in an attempt to determine atomic weight of 

graphite, Brodie (1859) used potassium chlorate and fuming nitric acid as oxidizing agents to 

prepare multilayered graphene oxide sheets called graphite oxide [13]. In 1958 Hummers and 
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Offeman developed a rapid, relatively safe and efficient method of preparation of graphite oxide 

by oxidizing graphene (in layers of graphite) with concentrated sulphuric acid, potassium 

permanganate, sodium nitrate and obtained C:O atomic ratio of 2.25 [14]. The level of oxidation 

depends a lot on the method of oxidation, reaction environment and the precursor graphite [15]. 

Although, the Graphite oxide was first prepared more than 150 years ago, the chemical structure 

of it is yet to be determined.  Graphite oxide consists of large number of functional groups 

including alcohols and epoxides, but it has stacking of layer GOs similar to graphite but with 

wider spacing (6-12 Å) with intercalation of water molecules between the layers [16]. Recent 

studies show that [17] [18], GO is an oxidized graphene sheet having a basal plane decorated 

mainly with epoxide and hydroxyl groups, and carbonyl and carboxyl groups located presumably 

at the edges (Lerf-Klinowski model). Fourier transform infrared spectra (FTIR) on GO also 

confirms existence of epoxy group (-O-) at 1050 cm-1, ketone group (-C=O) at 1680 cm-1, C-O 

vibrational mode at 1380 cm-1
,C-OH stretching vibration at 3470 cm-1 [19]. 
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Figure 6: Model of GO structure by Lerf-Kilwonowski [20] 

 

GO is electrically insulating materials due to disrupted sp2 bonding, however it can be made 

conductive by restoring π-network by its reduction [21]. Thus formed graphite oxide can be 

easily exfoliated by sonication to produce homogenous colloidal suspensions of GO sheets in 

aqueous [22] and various organic solvents. The thickness measurement done on GO sheet 

deposited on mica substrate using AFM (Atomic force microscopy) has shown that GO are 

typically single sheet (1 nm thickness on mica) [15]. The surface charge (zeta potential) of GO 

shows these sheets possess negative charge when dispersed in water [23]. This electrostatic 

repulsion together with hydrophilicity, enable them to from stable colloids in water. The 

exponential upsurge of interest in GO is due to its ability of cheap production for graphene like 

material. However, as mentioned earlier GO is insulator and thermally unstable, so it isn’t useful 
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for most of the practical applications.  However, its property can be greatly improved through 

reduction. The reduction can be done either chemically or thermally. Hydrazine [22] and sodium 

borohydride [24] are the most popular reducing agent used for the reduction. The reduced GO 

formed by treating GO with chemicals are called chemically reduced graphene oxide (CRGO) 

and by thermal treatment is called thermally reduced graphene oxide (TRGO). Both CRGO and 

TRGO get great enhancement in electrical conductivity but still they are inferior than pure 

graphene. CRGO still doesn’t have C:O ratio not much higher than 6:1. While reducing GO with 

hydrazine in water, the brown coloured suspension turns black, aggregates and finally 

precipitates [25], which is presumably due to the removal of oxygens, turning hydrophilic GO 

into hydrophobic CRGO. 

Nanoporous graphene and multilayered GO exhibits unlimited potential to be used as membranes 

for desalination with 100% salt rejection [26]. 
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1.4 Graphene monoxide 

1.4.1 Structure 

GMO is a graphene based 2D structure having quasi-hexagonal/centered-rectangular unit cell 

with two carbon atoms bridged by a double-epoxide pair. It has very high 1:1 C:O ratio [27]. 

Experimentally, it is prepared by in situ thermal reduction of multilayered GO in presence of Mo 

metal between 550-700℃ at high vacuum (10-7 torr) [27]. Unlike graphene which is semi-

metallic and has zero bandgap, the GMO is reported to have calculated tunable bandgap which 

can be switched between direct and indirect, over a large range (0-1.35 eV) for accessible strains 

[28]. Recent study using DFT theory also predict bandgap engineering of GMO can also be 

performed by creating vacancy or defect in GMO crystal structure [29]. Structure of GMO: 

 

Figure 7: (a) Top view of GMO with unit cell and parameters. Green and black spheres represent oxygen and carbon atoms 
respectively. (b) Perspective view of GMO. [27] 

Fig (7) shows 2D crystalline structure of GMO similar to graphene. Two of its carbon atoms are 

bridged by double-epoxy oxygen atoms. Due to bridging oxygen the overall area of unit cell is 

increased by 20% compared to graphene, lattice vectors a and b are increased to 3.09Å (from 

2.46Å) and angle between them increased to 124° (from 120°). Also the C-C distance increased 

124° a = 3.09Å 

b =3.09Å 

a 

1.66Å 

1.92Å 

b 
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to 1.66Å from 1.42Å. GMO structure has no of 3-fold symmetry as in graphene but has D2h 

symmetry. 

sp2
 hybridized bonding (σ) between carbon atoms in graphene is the strongest bonding which 

gives graphene stiff regular hexagonal structure. But due to presence of double-epoxy oxygen 

between carbon atoms, the first-principles calculations has shown the structure of GMO is 

mechanically soft and its bond length and lattice parameters can be easily changed by applying 

small stress which eventually leads to GMO to have tunable bandgap [28]. Due its flexibility 

different groups have proposed slightly different parameters for its structure, mainly in the angle 

between its lattice vectors from 124-130℃. 

1.4.2 Future applications:  

Most of the theoretical studies have shown single layer GMO is thermodynamically stable and its 

tunable bandgap make it a good candidate for fabricating nano-devices such as sensors, 

transistors and nano-electronics [30]. Furthermore, Woo et.al. [31] has shown lowering of 

bandgap using calculation for bi-layered GMO with different orientations (0.418-0.448 eV) 

compared to mono-layered GMO of similar structure (0.536 eV) and also theoretically 

demonstrated semiconductor to metal transition by applying very small electric field of Ec =0.22 

-0.3V/Å perpendicular to the basal plane of GMO. This lowering of bandgap for bi-layered 

GMO by applying electric field makes it useful in developing nano-scale field effect transistor in 

future.  
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1.5 Molybdenum and its oxides 

1.5.1 Molybdenum 

Molybdenum is a group VIB element, transition metal (d-block element) in periodic table. Due 

to its high melting point and as it forms hard and stable carbide forming in alloys, it is used in 

making hard steel alloys. It has a body centered cubic structure with lattice parameter 

a =3.147 Å, with space group number:229 and space group Im-3m. High melting point, low 

thermal expansion coefficient and high thermal/electrical conductivity make Mo a potential 

material for making power semiconductor components, glass-melting electrodes, and high 

temperature structure parts [32]. Molybdenum compounds are used as organic as well as 

inorganic catalysts. Molybdenum (IV) oxide (MoO2) and Molybdenum (VI) oxides (MoO3) are 

the most stable oxides. Other oxides found in literature are Mo4O11, Mo8O23, Mo9O26, Mo13O38, 

Mo17O47. 

 

Figure 8: Body centered crystal structure of Molybdenum 

Å 
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1.5.2 Molybdenum(VI) oxide 

 

Molybdenum trioxide (MoO3) is the most stable oxide of molybdenum under oxidizing 

environment. This yellow or light blue solid is composed of layers of distorted octahedral in an 

orthorhombic crystal which lattice parameters a=3.9628 Å, b=13.855 and c=3.6964, space 

number 62 and space group (pnma) [33]. MoO3 is the precursor compound for the most of the 

Mo compounds. However, molybdenite (MoS2) is the primary ore of Mo. After its purification, 

concentrated MoS2 ore is roasted in air at 500-600 °C to get impure MoO3 [34]. This impure 

MoO3 is treated with  

1.95Å 

2.31Å 

1.95Å 

2.42Å 

1.74Å 

1.68Å 

Figure 9: Crystal structure of orthorhombic Molybdenum trioxide 
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(i) sodium hydroxide (NaOH) to obtain sodium molybdate (Na2MoO4) precipitate, which 

is used as a fertilizer and also used as a precursor for many Mo products in lab [34]  

 2𝑀𝑜𝑆2 + 3𝑂2
500−650°𝐶
→       2𝑀𝑜𝑂3 + 2𝑆𝑂2 ↑  (1) 

 2𝑁𝑎𝑂𝐻 +𝑀𝑜𝑂3 → 𝑁𝑎2𝑀𝑜𝑂4 ↓ +𝐻2𝑂 (2)                 

(ii) Aqueous ammonia (NH3) to obtain Ammonium heptamolybdate ((NH4)6Mo7O24) in 

solution. This product is of great importance as the soluble product can be used for 

purification of MoO3 and it is also used as a precursor of different oxides of Mo 

including MoO3 in chemical synthesis [34]. 

 6𝑁𝐻3 + 3𝐻2𝑂 + 7𝑀𝑜𝑂3 ⇌ (𝑁𝐻4)6𝑀𝑜7𝑂24 (3) 

MoO3 has high bandgap because all of the valence electron of Mo atom is bonded to 

neighbouring oxygen atoms [35]. 

According to international molybdenum association, Mo metal is manufactured by heating MoO3 

or (NH4)2Mo7O24 in reducing H2 atmosphere in two stages because conversion directly to metal 

releases heat that inhibits the process. In the first stage MoO2 is produced 

 𝑀𝑜𝑂3 + 𝐻2
450−600℃
→       𝑀𝑜𝑂2 + 𝐻2𝑂 (4) 

In the second stage, MoO2 is reduced to molybdenum metal flowing H2 at temperature 1000-

1100℃. 

 2𝑀𝑜𝑂2 + 2𝐻2
1000−1100℃
→         2𝑀𝑜 + 2𝐻2𝑂 (5) 
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Figure 10: Molybdenum metal powder production [International Molybdenum Association] 

An alternative for production of Mo is by carbothermic reduction of MoO3. The detail 

mechanism of the reduction of MoO3 is described by Chaudhury et al. [36] and Hegedus et al. 

[37]. Carbothermic reduction include following steps. Based on the evolved gas composition and 

TGA, the reaction ca be represented by the following chemical equation. 

 𝑀𝑜𝑂3 + 0.51 𝐶
390−650℃
→       𝑀𝑜𝑂2 + .485 𝐶𝑂2 + 0.025 𝐶𝑂 (6) 

Not any molybdenum suboxide or others are formed as intermediated during this first stage of 

reaction. In second stage between 802 and 807℃ MoO2 is converted into Mo2C but Mo metal is 

formed during heating as an intermediate stage. 

Pure  Molybdenum trioxide 
or Ammonium Dimolybdate

•First Stage 
Hydrogen 
Reduction

Pure Molybdenum 
Dioxide

•Second 
Stage 
Hydrogen 
Reduction

Pure Molybdenum 
Powder
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 2𝑀𝑜𝑂2 + 4.175𝐶
802−807℃
→       𝑀𝑜2𝐶 + 2.35𝐶𝑂 + 0.825𝐶𝑂2 (7) 

Finally, at 1000℃ Mo metal is formed [37]. 

 

Figure 11 Carbothermal reduction of MoO3 at different stages 
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1.5.3 Molybdenum(IV) oxide  

 

Figure 12: Structure of monoclinic Molybdenum dioxide. 

Molybdenum dioxide (MoO2) is the most stable oxide of molybdenum under reducing 

environment. It is violet-coloured, monoclinic crystal having distorted rutile structure. Due to its 

distorted structure, the Mo atoms in crystal are off-centered, leading to alternating short and long 

Mo-Mo bonding. As this complex bonding is formed due to delocalization of some of the Mo 

electrons in conduction band, it possesses metallic conductivity. Nanoscale MoO2 is of great 

interest due to its importance in technical applications as a catalyst for partial oxidation of 

hydrocarbons, solid oxide fuel cell anodes and high-capacity reversible lithium ion battery 

anodes [34]. MoO2 supported on porous carbon catalyst is reported to have improved oxidative 

desulfurization of thiophene present in crude oil and this improved desulphurization can be 

attributed to the more number of free electrons and smaller steric hindrance in MoO2 [35] . 

2.05Å 

1.98 Å 

1.94 Å 

1.99 Å 

2.07 Å 

1.98 Å 

a 
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MoO2 decorated on reduced graphene due to its good chemical stability, high metallic 

conductivity, high surface area and high theoretical capacity of energy storage (838 mA h g-1) 

shows an enhanced electro-catalytic hydrogen evolution reaction with a low potential [38]. 

Hydroisomerization of alkanes (C4-C6) has a commercial importance in oil industry, since this 

process is used to increase the gasoline octane. Bulk MoO2 as prepared by H2 reduction (of 

MoO3, equation 4) has shown good selective isomerization reaction of alkanes [39] [40]. 

1.6 Lithium Ion Batteries (LIBs): 

With the industrial development and improve in living standard, the demand for energy is also 

growing continuously. So far fossil fuel is the major contributor for energy supply. But due to 

over exploitation of coal and petroleum there is sharp rocketing in their prices. Fossil fuels are 

also responsible for pollution and one of the major contributor in emission of greenhouse gas 

(CO2). Wind, solar and hydro-electricity can be a good alternative for the traditional fossil fuel as 

they are renewable and environment friendly. But these alternative sources are unreliable. They 

are not available when it is necessary. Sun energy can be harnessed only during sunny day, wind 

blows only for few hours during day and most of the hydro-electricity project are run off the 

river type. Energy form these alternative sources are wasted when it is not necessary and they are 

not available when it is necessary. So, it is necessary to develop a device which can store these 

energies when there is excessive production and utilize them when there is scarcity. The most 

popular device which can store energy is lead acid cell, which stores electrical energy in the form 

of chemical energy during charging and it can be discharged easily when it is necessary. It is 

cheap and easily available but energy storing capacity is very poor, need high maintenance and it 

uses highly toxic lead and sulphuric acid as active material. The battery which has the highest 
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volumetric energy density and specific energy density currently available in the market is 

Lithium ion battery (LIB). The major advantage of LIBs are light, portable, availability in any 

shapes and sizes, high energy density, low memory effect1, can be recharged for about (400-

1200) cycles and low self-discharge rate (8% at 20℃ per month). This rechargeable battery is 

used in most of the electronic devices such as smartphones, laptops, cameras, and also used in 

electric vehicles, electric drills etc. 

The active material in LIB are two electrodes, positive electrode (Cathode) and negative 

electrode (Anode) separated by a Separator, a permeable membrane soaked with non-aqueous 

electrolyte (Li-salt) mixed in organic solvent which provide a conductive medium for Li+ ions to 

move between electrodes. The choice of electrodes depends upon their electrochemical potential 

values (μA and μC for anode and cathode respectively) as well as their position relative to 

HOMO-LUMO2 energy gap (Eg) of the electrolyte [41]. For a stable cell, μA should be lower in 

energy than the LUMO of the electrolyte, otherwise the electrolyte will be reduced, and μC 

should be higher in energy than the HOMO of the electrolyte to inhibit the oxidation of the 

electrolyte [41]. LIB rely on reversible insertion (or intercalation) of Li+ ions between cathode 

and anode materials respectively. For an example cathode can be layered structure of metal oxide 

                                                 

1 Need to be discharged completely (to 25% in NiCd battery) before recharging, otherwise loses maximum energy 

capacity  

2 Highest occupied molecular orbital-Lowest unoccupied molecular orbital 
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(lithium cobalt oxide, LiCoO2) and anodes are made of layered carbon materials (graphite, C6) 

metal oxide and carbon respectively. During charging  

At Cathode: 

 𝐿𝑖𝐶𝑜𝑂2 → 𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝑥𝐿𝑖
+ + 𝑥𝑒− (8) 

At Anode: 

 𝐶6 + 𝑥𝐿𝑖
+ + 𝑥𝑒− → 𝐿𝑖𝑥𝐶6 (9) 

During discharging, at Cathode: 

 𝐿𝑖1−𝑥𝐶𝑜𝑂2 + 𝑥𝐿𝑖
+ + 𝑥𝑒− → 𝐿𝑖𝐶𝑜𝑂2     (10) 

At Anode: 

 𝐿𝑖𝑥𝐶6 → 𝐶6 + 𝑥𝐿𝑖
+ + 𝑥𝑒−     (11) 

These reactions are reversible. However, over discharge of LIB supersaturates LiCoO2 and 

dissociates into Li2O and CoO irreversibly at cathode [42]. 

 𝐿𝑖+ + 𝑒− + 𝐿𝑖𝐶𝑜𝑂2 → 𝐿𝑖2𝑂 + 𝐶𝑜𝑂 (12) 

Also overcharging up to 5.2 volts decomposes LiCoO2 into CoO2 irreversibly [43]. 

 𝐿𝑖𝐶𝑜𝑂2 → 𝐿𝑖
+ + 𝐶𝑜𝑂2 + 𝑒

− (13) 
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Figure 13 (a) Energy diagram of electrode potentials and electrolyte gaps in LIBs; (b) Schematic diagram of lithium intercalation 

and de-intercalation reaction mechanism in secondary LIBs with cathode connected to Cu connector and anode connected to Al 

connector 

Above equations show that during charging oxidation state of Co in Li1-xCoO2 changes from +3 

to +4, and back to +3 during discharging. This reaction is reversible only if x < 0.5. This means 

LIB with can’t be discharged completely. 

The other commercially available LIB have lithium iron phosphate (polyanion) or lithium 

manganese oxide (spinel) or their derivatives as cathode. Typically, electrolyte LiPF6 salt is 

mixed with hydrocarbon based mixture (ethylene carbonate, dimethyl, diethyl and ethylmethyl 

carbonates) including multiple additives [44]. 

The most commercial LIBs use graphite which is conducting and expands only modestly as 

anode material. But its theoretical specific capacity is only 374 mAh/g. Graphite can be replaced 

by metal oxides such as iron oxide, cobalt oxide, nickel oxide and molybdenum oxides to get 

higher specific capacity. 6 atoms of carbons are necessary for insertion of 1 lithium ion but 6 and 

4 ions of Li can be inserted per molecule of MoO3 and MoO2, so theoretical specific charge 

capacity of them is 1175 mAh/g and 840 mAh/g respectively. Also their high density enables 

them to store more energy per volume. But diffusion kinetics in metal oxides restrict their 
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capacities. Also huge volume variation of metal oxides during charging and discharging causes 

detachment of active material from the current collector [45] and pulverization of electrode 

material results into rapid decline in capacity after few cycles [46]. Also, silicon is 10 time more 

capable of storing Li ions but it swells enormously during charging, causing disconnection 

between contacts. So researcher trying to bind silicon and carbon together with flexible polymer 

binder to maintain conductivity with anode. But unfortunately, repeated swelling and shrinking 

of silicon during lithiation and dilithiation of silicon push away carbon particles [47] Since bulk 

metal oxides have problem due to volume variation, their nanostructure can be used for making 

anode of LIB since they have better accommodation of strains resulting from Li-insertion and 

extraction. Nano particles of molybdenum oxides in different shapes such as 1D nanorods, 

mesopores or 3D flower like rods have been reported. Though MoO3 (bandgap 3.1 eV) has 

higher specific capacity than MoO2, latter one is preferred for making anode due to its metal like 

electrical conductivity as well as its high thermal and chemical stability [48]. A lot of efforts are 

being made to make nanocomposite of MoO2 or MoO3 with bulk carbon, carbon nanotubes 

(CNTs) and graphene. MoO2-Carbon nanocomposite composed of inter-connected MoO2 

nanocrystals with carbon nanocoating on the surface synthesized by a facile one-pot 

hydrothermal method followed by thermal annealing in nitrogen flow has exhibited high specific 

capacity (high discharge capacity of 629 mAhg-1 retained when cycled at 200 mAg-1 for 50 

cycles) anode material [49]. MoO2/multiwalled carbon nanotube hybrid composed of spherical 

flower like nanostructures of MoO2 interconnected by MWCNTs prepared by one step 

hydrothermal route shows high reversible electrochemical lithium storage capacity of 

1025.2 mAhg-1 at current density of 100 mAg-1 after 160 cycles, which can be attributed to 

inherent electron conducting nature of MWCNTs interconnecting MoO2 nanostructures [45]. Due 
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to high mobility, large surface area, excellent electrical and thermal conductivity of graphene 

make it competitive material for making anode for LIB. Graphene layers prevents both volume 

changes and aggregation of metal oxide nanoparticles during charge/discharge processes as 

oxide nanoparticles are sandwiched between graphene sheets and therefore can’t agglomerate. 

Furthermore, the attachment of metal oxide or any other inorganic moiety on graphene 

effectively inhibits the restacking of graphene layers. Graphene can be made in large scale by 

reducing GO. Thus prepared r-GO have interplaner spacing higher than that of graphite which 

enable r-GO to intercalate more Li ions without much swelling. 
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1.7 Objective of Dissertation: 

Experimentally, GMO has been prepared by in situ thermal reduction of GO in Mo TEM grid (in 

nanoscale) with regions of GMO in mixture with graphene and graphene oxide [27]. GMO so 

formed has 2D structure, so it showed uniform two dimensional diffraction rings during SAED. 

However, during annealing experiment, 3D nanocrystals were also observed in bright and dark 

field imaging and those were identified as nano monoclinic crystals of MoO2 by high resolution 

imaging and selected area electron diffraction. In addition, EELS measurement done by Prof. 

Marija Gajdardziska-Josifovska at Arizona, also showed the presence of oxide of Molybdenum 

in the region of GMO/GO nano-composite. The choice of using Mo as a TEM grid for in situ 

thermal annealing of GO [27] is because of its high melting point and chemical stability at high 

temperature in vacuum. Due to thermal and chemical stability, Mo has been very much popular 

in making high quality steel. But the experiments have shown Mo from TEM grid move to the 

sample during heating and Mo is not chemically stable at higher temperature in presence of GO.  

 

On further annealing experiments of GO in Ni, Au, Pt and Cu grid under exactly similar 

condition as described in [27] have shown that GMO can’t be formed without catalyst 

(Molybdenum metal). MoO2/reduced GO was not initially a desired outcome from the thermal 

reduction experiment, but literatures have shown that MoO2 along with reduced GO as a nano-

composite has great potential in making LIBs.  

So, the main objective of my PhD dissertation is to 

1. understand the role of Mo catalyst in making GMO 
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2. Find out the bi-products of Mo formed along with GMO and reduced GO 

3. Manufacture GMO/GO nano-composite in large scale 

4. Solve the structure of GMO using other techniques such as powdered XRD and XAS and 

compare the results with compounds of Mo. 

5. Make GMO or graphene from sources other than GO 

6. Prepare MoO2-reduced GO nanocomposite in larger scale and use it in making energy 

storage device. 

7. Find out elements or compounds other than that of Mo for making GMO. 
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Chapter 2 Methods and instrumentations 

2.1 Crystallography 

An ideal crystal is formed by infinite repetition of identical structural units in space. In crystal 

group of atoms identical in composition, arrangement and orientation (basis) is repeatedly 

attached to regular periodic array of points in space (lattice).  

 𝐶𝑟𝑦𝑠𝑡𝑎𝑙 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 =  𝐿𝑎𝑡𝑡𝑖𝑐𝑒 +  𝐵𝑎𝑠𝑖𝑠 (14) 

Mathematically, lattice is defined in term of three non-coplanar, fundamental translation vectors 

𝑎⃗1, 𝑎⃗2 and 𝑎⃗3, such that the atomic arrangement in crystal look identical when viewed from the 

point 𝑟 and 𝑟′⃗⃗⃗⃗ . Where 

  𝑟′⃗⃗⃗⃗ = 𝑟 + 𝑇⃗⃗ (15) 

And  𝑇⃗⃗ = 𝑢1𝑎⃗1 + 𝑢2𝑎⃗2 + 𝑢3𝑎⃗3 (16) 

𝑇⃗⃗ is called translational vector and u1, u2 and u3 are arbitrary integers. 

Any lattice which looks identical from two arbitrary point 𝑟 and 𝑟′⃗⃗⃗⃗  and satisfy equations (15) and 

(16) are called primitive lattice and corresponding vectors are called primitive vectors. The 

parallelepiped formed by primitive axes  𝑎⃗1, 𝑎⃗2 and 𝑎⃗3 is called primitive lattice cell. It is a unit 

cell with minimum volume and has only one lattice point per cell. The basis attached with 

primitive cell is called primitive basis and the primitive basis has minimum number of atoms. 

As basis consists of one or many number of atoms. The position of jth atom in basis 

corresponding to lattice point of that basis taken as origin is given by 
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 𝑟𝑗 = 𝑥𝑗𝑎⃗1 + 𝑦𝑗𝑎⃗2 + 𝑧𝑗𝑎⃗3 (17) 

Where 0 ≤ 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 ≤ 1. 

Reciprocal lattice: 

For primitive real lattice vectors 𝑎⃗1, 𝑎⃗2 𝑎𝑛𝑑 𝑎⃗3 the corresponding primitive reciprocal lattice 

vectors 𝑏⃗⃗1, 𝑏⃗⃗2 𝑎𝑛𝑑 𝑏⃗⃗3 are defined as 

 𝑏⃗⃗𝑖 =
2𝜋(𝑎⃗⃗𝑗 𝑥 𝑎⃗⃗𝑘)

[𝑎⃗⃗𝑖.(𝑎⃗⃗𝑗 𝑥 𝑎⃗⃗𝑗)]
 (18) 

where, i, j and k =1,2 or 3 

Analogous to real space, reciprocal lattice vector is 

 𝐺⃗ = 𝑣1𝑏1⃗⃗ ⃗⃗ + 𝑣2𝑏⃗⃗2 + 𝑣3𝑏⃗⃗3 (19) 

Where 𝑣1, 𝑣2 𝑎𝑛𝑑 𝑣3 are integers and (𝑣1, 𝑣2, 𝑣3) are points in reciprocal-space. 𝐺⃗ is a vector 

from origin in reciprocal to the reciprocal lattice point  (𝑣1, 𝑣2, 𝑣3). Each point (𝑣1, 𝑣2, 𝑣3) in 

reciprocal space completely describes the crystal and represents the orientation and spacing of 

that set of Miller planes in real space. The 𝐺⃗ can be shown always perpendicular to the Miller 

plane (𝑣1, 𝑣2, 𝑣3) and the distance between the Miller plane is given by 

 𝑑𝑣1𝑣2𝑣3 =
1

|𝐺⃗𝑣1𝑣2𝑣3|
 (20) 

Clearly from Eqn (18) the scalar product of primitive lattice vectors of real and reciprocal spaces 

are  
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 𝑎⃗𝑖. 𝑏⃗⃗𝑗 = 2𝜋𝛿𝑖𝑗  (21) 

Vectors in real space have dimensions of [length] and vectors in reciprocal lattice have the 

dimensions of [1/length] or reciprocal lattice is Fourier space associated with the crystal. 

Diffraction condition: As wavelength of X-rays (or electron, neutron waves) and interplaner 

spacing of crystal planes are of same order, when X-ray (or electron, neutron waves) passes 

through crystal, diffraction may occur. Diffraction of X-ray, can occur if X-ray is elastically 

scattered by electron density surrounding atoms. X-rays are scattered by electron charge density 

of atom surrounding its nucleus, whereas electron are scattered by both the electron charge 

density as well as nucleus and neutron don’t have charge, so they are only scattered by the 

nucleus of atom. During elastic scattering, the wave vector 𝑘⃗⃗ changes its direction and becomes 

𝑘′⃗⃗⃗⃗ . However, the magnitude doesn’t change during elastic scattering. For diffraction to occur, it 

can be shown that the change in wave vector 

 𝑘′⃗⃗⃗⃗ − 𝑘⃗⃗ = 𝛥𝑘 = 𝐺⃗ (22) 

Taking scalar product on both sides with primitive lattice vectors gives 

 𝑎1⃗⃗⃗⃗⃗. 𝛥𝑘⃗⃗ = 2𝜋𝑣1,         𝑎2⃗⃗⃗⃗⃗. 𝛥𝑘⃗⃗ = 2𝜋𝑣2,         𝑎3⃗⃗⃗⃗⃗. 𝛥𝑘⃗⃗ = 2𝜋𝑣3 (23) 

This equation (23) are called Laue Equations and the condition (22) is called Laue condition. 

Ewald’s sphere: 
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Ewald’s sphere is a useful construction for visualizing diffraction in reciprocal lattice. The 

wavevector  𝑘⃗⃗ is drawn in a direction of incident X-ray beam (monochromatic) from point A 

terminating at origin in reciprocal space. As diffraction is an elastic scattering of X-ray (or 

electron or neutron), the length of incident wavevector (𝑘⃗⃗) and scattered wavevector (𝑘′⃗⃗⃗⃗ 𝑎𝑛𝑑 𝑘″⃗⃗⃗⃗⃗) 

in fig (14) are equal. So, a sphere is drawn with the radius equal to length of 𝑘⃗⃗. The Laue 

condition (22) is satisfied by all the reciprocal points passing through the surface of sphere and 

diffraction due to corresponding Miller planes can be observed in detector. 

 

Figure 14: Ewald sphere constructed having radius |𝑘⃗⃗| in direction of incident beam and terminating at Origin O and passing 

through point B and F in reciprocal space. As the reflecting plane is perpendicular to 𝐺⃗, the diffracting plane for scattered wave 

AB contains plane AE. perpendicular to the plane of paper 

 The major difference between X-ray and electron diffraction is the radius of Ewald’s sphere. 

The wavelength of X-ray is much longer than electron, so wavevector for electron is much larger 
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than X-ray so that for electron waves Ewald’s sphere looks almost flat and include more points 

in reciprocal lattice. The wavevector of 19.95 keV X-ray and 300 keV electrons are 10.1 and 

318.94   Å-1 respectively. 

 

2.2  X-ray diffraction 

2.2.1 Introduction 

X-rays are a form of electromagnetic radiation having very short wavelength ranging from 0.01 

to 10 nm, are produced by accelerating e-s. The first systematic study of X-rays was done by 

Wilhelm Rontgent in 1895. Max von Laue, in 1912 demonstrated crystalline substances act as 

three dimensional diffraction gratings for X-ray as the wavelength of X-rays are of same order of 

spacing between planes of crystals. His experiment on copper sulphate crystals not only showed 

wave nature of X-rays but also showed that matter (crystals) are formed by periodic repetition of 

similar atoms or group of atoms. William Lawrence Bragg and William Henry Bragg used X-ray 

diffraction pattern of NaCl, KCl, ZnS and diamond to find out their crystal structure. William 

Lawrence Bragg explained his result by modelling crystal as a sets of parallel planes of atoms 

with constant separation ‘d’. According to his theory, a constructive interference of scattering X-

ray waves due to a set of parallel planes appears and forms a diffraction peak if the path 

difference in the reflection of X-ray radiation due to each sets of plane is equal to the integer 

number multiple of wavelength of incident X-ray, otherwise scattered waves destructively 

interfere and scattered intensity is minimum. The Bragg’s law is 

 2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆 (24) 
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where θ is the glancing angle and λ is wavelength of incident X-ray. Bragg’s law holds equally 

for electron or neutron diffraction. Experimentally, it is the angle between incident ray and 

reflected ray (2θ) which is measured. As the value of sinθ should be less or equal to unity, the 

wavelength of X-ray beam should be less than twice the separation between the plane (2d). 

 

Figure 15: Bragg’s law. The incident X-ray beams are incident at glancing angle θ are reflected by e- cloud of atoms at different 

parallel planes separated by the distance ‘d’. The lower incident X-ray beam has to travel 2d sinθ more distance than upper 

incident X-ray. 

When a beam of X-ray is incident on a thin sample, most of the X-ray beam doesn’t interact and 

travel in a straight line without any deflection and is called direct beam. The remaining part will 

scatter elastically or in-elastically. Inelastic scattering of X-ray beam will be discussed in X-ray 

absorption spectroscopy section. The elastically scattered X-ray beam follow Bragg’s law, have 

same energy, wavelength but with different direction as of incident X-rays. For a single crystal 

and monochromatic X-ray these elastically scattered X-rays forms a dark diffraction spot (also 

called Bragg’s spot) in photographic place, surrounding central dark spot due to direct X-ray 

beam, corresponding to reflecting plane. However, if the sample is polycrystalline or randomly 

oriented powder, diffracted waves that satisfy Bragg’s condition lie on a cone at an angle 2θ with 
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incident beam, so instead of a diffraction spot a diffraction ring is observed in photographic plate 

or detector. The two dimensional diffraction pattern formed in detector can be reduced into one 

dimensional intensity profile by integrating intensity of each diffraction rings with respect to 

diffraction angle (2θ) as shown in fig (16). 

 

Figure 16  (a) Diffraction pattern of single oriented crystal (b) Diffraction pattern of four crystals at different orientations with 

respect to the incident beam (c) Diffraction rings formed by randomly oriented powdered crystals (d) Integrated intensity of 
diffraction rings of polycrystalline sample. 

 

Currently, X-ray diffraction (XRD) is the primary analytical technique used for phase 

identification of a crystalline material and is used to obtain lattice cell parameter of crystals. Its 

use is not only limited to crystals; this technique is also used in amorphous material as well as in 

biological protein crystals. 
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2.2.2 Experimental setup: 

In the most widely used X-ray diffraction setup, a X-ray tube source coupled with image plate 

detector are used. In X-ray tube thermally generated electrons are accelerated with about 50 keV 

and Cu is used as target. X-rays are produced when electrons are retarded by Cu target during 

collision. At 50 keV, some incident electrons have enough energy to knock out K-shell electrons 

of Cu atom, resulting transition of electrons from higher orbit to occupy vacant K-shell with 

emission of characteristic X-rays, Kα and Kβ lines. In most of the diffraction experiments, Kα and 

Kβ line of Cu are selected using monochromator. Our experiments were performed at Advanced 

Photon Source at Argonne national lab. Synchrotron based X-ray beam nearby Mo-K edge 

(19.95 keV, 19.999 keV and 20.0 keV) were used as incident X-ray beam on sample. Two single 

crystal of Si were used as monochromator and the beam was passed through the slit of 0.5-

micron square. Samples were XRD experiments were prepared by crushing at mortar using 

pestle. Amorphous glass of 10 cm length and 1 mm internal diameter were filled with sample for 

measurements. Pilatus 100k Detector was used as a plane detector. Four different scans were 

taken for a measurement with the given energy. The first scan was scanning of background 

(empty glass capillary tube) with X-ray beam shutter closed, this is also called background dark 

scan. The second scan was again of background (empty glass capillary tube) with the X-ray 

shutter opened, this is also called background scan. The shutter is closed for a while so that 

current in detector dies. Then sample is allowed between X-ray beam and detector with X-ray 

beam shutter closed. This scan is called sample dark scan. Later shutter is opened and diffraction 

pattern is obtained in detector. In all 4 scans, a heavy metal beam stopper is used between sample 

and detector to stop central beam which is highly intense and can damage detector. For analysis, 
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background dark scan is subtracted from background scan to obtain net background scan, and 

sample dark scan is subtracted from sample scan to obtain net sample scan. Finally, net 

background scan is subtracted from net sample scan. The whole analysis is done using Nika 

macro in Igor Pro software. An example of Debye-Scherer ring diffraction pattern formed after 

processing is shown in fig (17) and its1D reduced pattern is shown in fig (18). This whole set of 

scans are repeated 12 times. Each 2D data (Debye-Scherer ring diffraction pattern) data is 

reduced into 1D by sectorial line integration of intensity of diffraction rings again using Nika 

package [50]. Finally, average was taken form twelve 1D data. The width of peaks was measured 

using Multipeak Fitting 2 package of igorpro software. 

 

Figure 17: 2D raw diffraction pattern of graphite with beam stopper blocking direct X-ray beam. To obtain larger Debye-Scherer 
rings, the direct beam is not at the center of the detector. 
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Figure 18: 1D integrated line intensity profile obtained from fig (17 ). 

 

2.3 Electron Microscopy 

2.3.1 Introduction 

An electron moving with high velocity can be considered as a travelling wave and de Brolie’s 

equation can be used to find out its wavelength. The de Broglie wavelength of a particle is given 

by 

 𝜆 =
ℎ

𝑝
  (25) 

Where p is the linear momentum of the moving particle and h is Plank’s constant. 

In TEM, kinetic energy gained by electron is due to applied accelerating potential, V. Thus loss 

in potential energy must be equal to gain in kinetic energy of electron. 

 𝑒𝑉 =
𝑚𝑒𝑣

2

2
 (26) 

The momentum p of electron is given by 
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 𝑝 = 𝑚𝑒𝑣 (27) 

Substituting the value of ‘v’ from equation (26)  

 𝑝 = (2𝑚𝑒𝑒𝑉)
1

2 (28) 

The de Broglie equation for wavelength of non-relativistic electron becomes 

 𝜆𝑒 =
ℎ

(2𝑚𝑒𝑒𝑉)
1
2

 (29) 

For electron accelerated with more than 100 keV, the relativistic effect has to be taken into 

account and with relativistic correction, the de Broglie wavelength of electron is 

 𝜆𝑒 =
ℎ

[2𝑚𝑒𝑒𝑉(1+
𝑒𝑉

2𝑚𝑒𝑐
2)]

1
2

 (30) 

This equation (30) shows the inverse relationship between λe and V.  

For an electron accelerated with 300 kV has a velocity of 2.33 x 108 m/s and wavelength of 

1.97 x 10-12m. Due to its smaller wavelength compared to visible light, electron beam can be 

used for achieving atomic resolution imaging. However due to aberration, desired resolution is 

difficult to achieve. 

As electrons interact strongly with specimen, the specimen prepared should be extremely thin. 

For very thin specimen most of the e- beam is transmitted without any deviation. This transmitted 

beam is called direct beam. The incident coherent beam can be forward or backward scattered. 

Due to forward scattering through thin sample, we can obtain diffraction pattern (DP), image, X-
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ray spectrum and electron energy-loss spectrum [EELS]. Back scattering can be used for imaging 

mode in scanning electron microscopy. Forward scattered beam consists of incoherent inelastic 

scattered electrons, coherent elastic scattered electrons and incoherent elastic forward scattered 

electrons. Back scattering beam consists of incoherent elastic back scattered electrons and 

scattering electrons from within specimen. 

  

Elastically scattered electrons are the major source of contrast in TEM and intensity in DP. 

Diffraction phenomenon can be explained by wave theory and it is controlled by angle of 

incidence of electron beam to the atomic planes in the specimen, spacing between the planes and 

interatomic distances within the planes. 

Electron gun (Lithium hexaboride LiB6) produces thermal electrons which are accelerated by 

300 kV. First condenser lens (C1) forms image of gun at crossover which acts as object for 

second condenser lens (C2). C2 also form point image at second crossover. Second crossover is at 

forward focal plane of upper objective lens or third condenser lens (C3). C3 lens form collimated 

Figure 19: Different kind of electron scattering from thin specimen [51] 
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electron beam which are then incident on specimen. Suitable condenser aperture can be chosen 

to selected size or intensity of incident beam.  

Figure 20: Parallel beam of electron formed by condenser lenses [51]. 

 Electrons interact with both surrounding electron and proton of atom of specimen. During 

interaction, most of them moves without deflection while some of them are scattered. The 

scattered waves interfere and recombined by magnetic objective lens. Diffraction pattern is 

formed at back focal plane (BFP) and image is formed at image plane. 

2.3.2 Diffraction mode:  

In this mode imaging system lenses are adjusted in such a way that BFP of objective lens acts as 

the object plane for intermediate lens. Finally, DP is projected onto viewing screen or CCD 

camera by projector lens. Selected area diffraction is done by inserting aperture in one of the 

image plane of an imaging lens (objective lens). This creates a virtual aperture at the plane of 
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specimen. Condenser aperture C2 or C3 can also be inserted to converge the beam on specimen to 

obtain converging beam electron diffraction (CBED) pattern. 

2.3.3 Image mode:  

In this mode, intermediate lenses are adjusted such that image plane of objective is object plane 

of intermediate lenses and finally image is projected on viewing screen or CCD camera. 

During diffraction mode, objective aperture is removed and selected area aperture (SAA) is 

inserted. While in image mode SAA is removed. When objective aperture is not inserted, 

transmitted electron beam consists of direct as well as scattered electrons. In this configuration, 

final image is not very clear and at high magnification interference fringes can be seen in image 

(high resolution image). Inserting objective aperture selects mainly direct beam and restrict 

scattered beam. Selecting mainly direct beam is called bright field imaging. Also only scattered 

light can be selected by same aperture and this mode is called dark field imaging.  
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Figure 21: fig on left is DP mode and on right is image mode [51]. 

 

2.3.4 Energy-dispersive x-ray spectroscopy (EDX): 

2.3.4.1 Introduction  

It is most commonly employed technique used for elemental analysis of sample on the 

nanometer scale using analytical electron microscope. Sensitivity of this technique is 

comparatively better for elements with higher atomic number.  
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When fast moving electron traverses through thin sample, electron can be scattered elastically as 

well as inelastically. During inelastic interaction, energy and momentum of incident beam of 

electrons may be transferred to specimen, resulting in the production of two different kinds of X-

rays.  

Incident beam of electrons may eject inner shell electron (inner-core ionization of atom) of the 

specimen atoms. The vacant inner shell may be filled by transition of electron form higher orbit 

with the release of X-ray photons with the energy equal to the difference in the energies between 

two energy levels. Such produced X-rays are called characteristic X-rays. The energy of 

characteristic X-rays are characteristic of the atom and allows elemental analysis to be 

performed. However, the transition of electron from higher orbit to vacant shell can be 

accompanied by release of another electron from the same atom with energy equal to the 

difference in energies between two energy level. In this case, no photon will be released. This 

effect is called Auger effect and the released electron is called Auger electron. The energy of 

incident electron E has to be greater than ionization energy 3Enl of a shell with quantum numbers 

n and l. The ionization cross section is given by formula 

 𝜎𝑛𝑙 =
𝜋𝑒4𝑍𝑛𝑙

(4𝜋𝜖0)2𝐸 𝐸𝑛𝑙
𝑏𝑛𝑙  ln (

4𝐸

𝐵𝑛𝑙
) (31) 

Where bnl and Bnl  are numerical constants [bk =0,35 and Bk = 1.65 Ek for the K shell] 

                                                 

3 Enl is the energy difference to the first occupied state above the Fermi level 



www.manaraa.com

 

44 

 

 

Figure 22 Schematic representation of (a) the ionization process, (b) x-ray emission, and (c) Auger-electron emission. [52] 

Also incident electron beam might only be scattered by nucleus of the specimen atom. During 

this inelastic interaction with nucleus, electron is continuously accelerated in the Coulomb field 

of the nucleus and continuum (Bremsstrahlung) X-rays are produced [52].  

Either lithium drifted silicon [Si(Li)] detectors or high purity intrinsic germanium detectors 

(HPGe, or IG in short) are used in modern TEM for counting X-ray photons which consists of 

both characteristic X-ray peaks along with continuum X-rays background. For elemental 



www.manaraa.com

 

45 

 

analysis, background has to be properly removed. But characteristic peaks due to lower atomic 

number elements are buried inside continuum X-rays background, so the sensitivity of EDX is 

poor for lower atomic number elements. 

2.3.4.2 Experimental setup: 

TEM samples were prepared on Ni, Cu, Pt and Mo TEM grid. Single tilt, double tilt and Gatan 

tantalum-cup heating holder were used. Hitachi H9000NAR TEM operating at 300 keV was 

used. Column pressure was of the order of 10-7
 torr. CCD camera was used in TEM. SAED, 

bright field imaging, dark field imaging and EDX were performed. 

 

2.4 Infrared Spectroscopy 

2.4.1 Introduction 

Infrared radiation belongs to electromagnetic radiation in the range of 700 nm- 1 mm in 

wavelength or 14285 -10 cm-1 in wavenumber, having frequency higher than microwaves and 

lower than visible light. It can be further divided into far-IR 400-10 cm-1(25-1000 μm), mid-IR 

4000-400 cm-1(2.5-25 μm) and near-IR 14000-4000 cm-1. 

Molecular vibration: A molecule with N atoms have 3N degrees of freedom. It has 3 degrees of 

freedom for translational and another 3 degrees of freedom for rotation. So for a nonlinear 

molecule, there are 3N-6 modes of vibration (for nonlinear molecule) and 3N-5 for linear 

molecule. Each mode involves approximately harmonic displacements of the atoms from their 
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equilibrium positions. For each, ith mode all the atoms vibrate at characteristic frequency, νi. 

Thus potential energy of this simple harmonic oscillator is given by the equation 

 𝑉𝑖𝑛 = ℎ𝜈𝑖(𝑛𝑖 +
1

2
) (32) 

Where h is Plank’s constant, νi is fundamental frequency of the ith mode and ni is the vibrational 

quantum number of the ith mode (ni = 0, 1, 2, ….).  

Infrared spectra originate in transitions between two vibrational levels of the molecule in the 

electronic ground state and are usually observed as absorption spectra in mid infrared region. It 

should be noted that pure rotational, vibrational, and electronic spectra are usually observed in 

the microwave and far infrared, the infrared, and the visible and ultraviolet regions, respectively 

[53]. If the vibrational modes were strictly harmonic, no transition other than Δni = ± 1 would be 

allowed. However, the system behaves as anharmonic oscillator. So, overtone (Δni = ± 2, 3,…) 

and combination (Δni =1; Δnj = 1, where j represents a different mode) commonly appears 

weakly along with fundamental transitions. Also if the sample is in gaseous state, the rotational 

transitions are superimposed along with vibrational transitions making absorption spectra more 

complicated. 

IR spectroscopy is used to obtain chemical information about the sample. Usually mid infrared 

(4000cm-1-400cm-1) is used for this purpose as frequency of vibration of molecule lie within this 

range. All the materials consist of atoms or radical and they vibrate with their natural frequency. 

If the beam of incident electromagnetic radiation is equal to or is the integral number multiple of 

natural frequency of vibration, it may be absorbed by vibrating molecule. IR radiation is only 

absorbed if the electric dipole moment of the vibrating molecule is changing with vibration. If 

electric dipole moment changes with vibration, such mode of vibration is called “IR active”. It 
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should be noted that all modes of vibrations are not IR active. As an example, when a 

homonuclear diatomic molecule such as O2, N2 or H2 stretches, there is no change in electric 

dipole moment, so this stretching mode is “Infrared inactive” but stretching mode of 

heteronuclear molecule such as CO or NO is “Infrared active”. Usually, group theory is applied 

for identification of IR active modes. 

IR radiation can enforce two different kinds of vibrations (stretching and bending). Usually 

stretching needs more energy so it absorbs IR at higher frequency (4000 cm-1-1500 cm-1) 

whereas bending takes place at lower frequency (below 1500 cm-1) and this region is called 

finger print region as spectrum in the region is complex but unique of the sample. 

FTIR spectrometer consists of broadband IR source (Globar, synchrotron), Michelson 

interferometer, sample compartment and detector (DTGS, MCT or FPA). Light from source is 

made collimated and enters interferometer. Interferometer consists of beamsplitter which splits 

beam into two different mirrors and among those mirrors one of them is moving. IR beam 

reflected from those mirrors are allowed to pass through sample compartment (where some of 

them might get absorbed) and finally enters detector. 

 

Figure 23: Basic components of FTIR spectrometer 

Detector measures the intensity of IR light and makes interferogram. Interferogram is a sum of 

waves from different frequencies with respect to the mirror positions. It has information in time 

domain which is later transformed into frequency domain by fast Fourier transform (FFT). 
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Spectrums are obtained without sample (Background) and with sample. The ratio of sample to 

background gives transmittance spectrum which can be converted into absorbance by 

 𝐴 = −𝑙𝑜𝑔
Io

I
 (33) 

Where Io= Intensity at detector without sample 

 I= Intensity at detector with sample 

Here we have assumed that sample doesn’t reflect and scatter. 

Absorbance is usually used instead of transmittance because it can be related with absorptivity 

(M-1 cm-1) which is the unique property of the sample. 

Absorbance = Absorptivity (M-1cm-1) * Pathlength (cm) * Concentration (M) 

2.4.2 Sources: 

 The most common mid-infrared source used in FT-IR spectrometers is a resistively heated 

silicon carbide rod which is also called Globar. It is operated around 1300K. Synchrotron based 

source IR is also used when high intensity beam and good signal to noise ratio (SNR) is required. 

2.4.3 Detectors:  

Thermal or quantum detectors are mainly used for IR measurement. 

Deuterated triglycine sulphate (DTGS) detector: It is a very sensitive thermal (pyroelectric) 

detector operated at room temperature for mid-infrared range measurements that employs 
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temperature-sensitive ferroelectric crystals of deuterated triglycine sulphate. When IR radiation 

falls on DTGS detector, its temperature changes and hence the polarizability of the crystals 

changes. Change in polarization generates charge which is detected by two parallel electrodes 

[Royal society of Chemistry]. The deuterated form of the crystals is used because of their higher 

Curie point (Tc ≈ 49℃ higher by 10℃). If the temperature of a pyroelectric detector exceeds its 

Curie temperature, its response drops to zero and the element must be repolarized before it can 

be reused [54]. The range of this detector is from 400 -8000 cm-1.  

Sample for DTGS detector are usually made by mixing the finely crushed sample (2%) with KBr 

powder into pellets of 2mm diameter and about 0.1-0.3 mm thick. 

Mercury cadmium telluride (MCT or HgCdTe): MCT is a highly sensitive quantum detector 

which is made from alloy of semimetal HgTe and semiconductor CdTe (bandgap 1.5eV at room 

temperature). So the alloy has tunable bandgap between 0 and 1.5eV. When Infrared photon is 

incident on MCT, it may kick electron from valence band to the conduction band. This ejected 

electron can be collected by collected by readout integrated circuits (ROIC) and transformed into 

an electric signal. The main drawback of MCT detector is it need to be cooled to liquid nitrogen 

(LN2) temperature (77K), to reduce noise due to thermally excited current carriers. But it has 

higher speed of detection(scan) and is more sensitive than thermal detectors. Its range is 650-

8000   cm-1.  

Samples for MCT detector: MCT detector are usually attached with IR microscope. So the 

microscope is capable of detecting IR signals from sample of few microns in surface area and 

nanometers in thickness. So the sample can be placed on KBr pellet, diamond window or TEM 

grid of 300 mesh. 
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Bruker Hyperion 3000 microscope was used for IR spectroscopy. Samples were prepared on 

TEM grids, diamond windows and KBr pellet. 

 

 

 

 

 

2.5 X-ray Absorption Spectroscopy(XAS) 

XAS measurement is a technique used to characterize structure of crystalline, amorphous and 

even liquid states of materials. XAS can be further divided into X-ray absorption at near edge 

structure (XANES) and Extended X-ray absorption fine structure (EXAFS).  

2.5.1 Principles of XAS: 

When x-ray photons are incident on any material, they are absorbed by the material obeying Beer 

Lambert’s law 

 𝐼 = 𝐼0 𝑒
−𝜇𝑡 (34) 

Where Io
 is intensity of incident x-ray on sample, t is the sample thickness, I is the intensity of 

transmitted x-ray through sample and µ is the linear absorption coefficient of material depending 

on the types of atoms and the density (ρ) of material.  

For most of the x-ray energies, µ is the smooth function of energy 
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 𝜇 ≈
𝜌𝑍4

𝐴𝐸3
 (35) 

Where ρ is density of material, Z is atomic number and A is atomic mass and E is the energy of 

the incident x-ray.  

This equation shows absorption coefficient for the given material decreases with the increase in 

energy (decrease in wavelength) of x-ray. That means X-rays with higher energy have higher 

penetrating power. Also refractive index for x-rays is lower than unity for any material [55]. X-

ray absorption coefficient σa of an atom (or molecule) is defined as the number of electrons 

excited per unit time divided by the number of incident photons per unit time per unit area and it 

is related to absorption cross-section by the relation 

 𝜇 = (
𝜌𝑚𝑁𝐴

𝐴
) 𝜎𝑎 (36) 

However, when incident x-ray energy is equal to binding energy of a core-electron, there is a 

sharp rise in absorption due to the promotion of core level electron to continuum state. The 

incident x-ray photon may eject core-electron if the energy of photon is equal or greater than 

binding energy of core electron. Thus, the energies of the absorbed radiation at these edges 

correspond to the binding energies of electron in the K, L, M …. shells of the absorbing elements 

and the absorption edges are labeled in the order of increasing energy, K, L and so on. This 

quantum mechanical phenomenon is called Photoelectric effect. As core electron binding energy 

is unique for every element, the absorption edge energy is also unique, so XAS is element 

specific technique.  XAS measurement is the measurement of variation of absorption coefficient 

of material around absorption edge. 
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Figure 24: The photo electric effect, in which x-ray is absorbed and a core level electron is promoted out of the atom 

There is single K edge but 3 distinct L edges, L1, L2 and L3 in decreasing order. Splitting of L 

shell is due to removal of degeneracy in L shell. Degeneracy of L shell is removed by (i) 

screening of nuclear charge by K electrons resulting lowering of 2s electrons compared to 2p 

electrons4 (ii) spin orbit coupling resulting into difference in energy between 2p1/2, and 2p3/2 

orbitals. L1, L2 and L3 corresponds to 2s (2 electrons), 2p1/2 (2 electrons) and 2p3/2 (4 electrons) 

orbitals. Beside the photoelectric absorption5, x-rays can also be absorbed due to Thomson and 

Compton scattering. 

If ℏω be the energy of incoming x-ray photon and Eb be the binding energy of ejected 

electron, the final energy Ef of the photoelectron (ejected electron) is  

 𝐸𝑓 = ℏ𝜔 − 𝐸𝑏  (37) 

                                                 

4 The self-consistent one-electron potential drops faster than the pure coulomb potential 

5 Photoelectric absorption is the dominant absorption of X-rays at photon energy less than mec2
= 511 keV and it is 

sometimes also called true absorption. 
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The photoelectron interacts with the neighboring atoms as a wave with momentum ℏk and the 

wavevector is given by 

 𝑘 =
√2𝑚𝑒(ℏ𝜔−𝐸𝑏)

ℏ
   (38) 

The transition rate W, i.e. the probability of a transition to occur per unit time is calculated using 

Fermi’s golden rule [56] [57]. 

 𝑊 =
2𝜋

ℏ
∑ |⟨𝑓|ℋ𝐼|𝑖⟩|

2
𝑓 𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) (39) 

Where |i⟩ and |f⟩ are initial and final states, ℋI is interaction Hamiltonian and ⟨𝑓|ℋ𝐼|𝑖⟩ is 

matrix element of interaction Hamiltonian. It can be shown that absorption cross-section is  

           𝜎𝑎 = (
2𝜋

ℏ𝑐
) (

𝑉2

4𝜋3
)∫ |⟨𝑓|ℋ𝐼|𝑖⟩|

2 𝛿 (ℰ𝑝𝑒 − (ℰ − ℰ𝑏)) 𝑞
2𝑠𝑖𝑛𝜃𝑑𝑞𝑑𝜃𝑑ϕ (40) 

Where, ℰpe= K.E of photoelectron = ℏ2q2/2m, ℰ = energy of incident x-ray photon = ℏω 

and ℰb = binding energy of core shell electron 

  i.e.  𝜎𝑎 ∝ ⟨𝑓|ℋ𝐼|𝑖⟩|
2  

Hence, linear absorption coefficient is 

  𝜇 ∝ |⟨𝑓|ℋ𝐼|𝑖⟩|
2  

The neighboring atoms can be considered as a point scatters which scatter back outgoing 

photoelectron wave. The interference of multiple backscattered waves with outgoing 

photoelectron wave give rise to a modulation of the x-ray absorption coefficient μ(E) after the 
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edge, also called fine structure. In XAS measurement 6μ(E) is directly measured using equation 

(34).  

The region before edge is called pre-edge region where as the fine structure at near edge region 

is called XANES (X-ray absorption near edge structure) and in the extended region is called 

EXAFS (Extended X-ray Absorption Fine Structure), which are shown in figure (26). XANES 

contains information about average oxidation state, local coordination environment (valence) and 

density of states of the absorber, as well as qualitative structural information [58]. XANES are 

difficult for interpretation using theory so they are compared with simulations. EXAFS provides 

quantitative information on average bond length between absorbing atom with its neighboring 

atoms, coordination number, type of the neighboring atoms and mean square disorder of 

neighboring atoms [58].  

2.5.2 Theory for EXAFS: 

For EXAFS analysis, a dimensionless quantity is defined from μ(E) as  

 𝜒(𝑞(𝐸)) =
𝜇(𝐸)−𝜇0(𝐸)

𝜇0(𝐸)
  (41) 

𝑜𝑟, 𝜇(𝐸) = 𝜇0(𝐸)[1 + 𝜒(𝑞)] 

Where q(E) is the length of the wavevector of photoelectron, μ0(E) is the absorption coefficient 

of the isolated atom if EXAFS were absent and μ(E) is the absorption coefficient of material of 

                                                 

6 Thickness ‘t’ in equation (34) is constant for the given sample for any energy of X-ray and can be removed by 

proper normalization 
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interest. μ0(E) is obtained beyond edge region by extrapolation of curve at pre-edge region.   

The goal of EXAFS is to find out radii of neighboring shells and their occupation number from 

the atom ejecting photoelectron. The matrix element of the interaction Hamiltonian, ⟨𝑓|ℋ|𝑖⟩ is 

fundamental, so it doesn’t depend on details of neighboring atoms. The initial state |𝑖⟩  describes 

the innermost electrons of absorbing atom, so it also doesn’t depend much of the 

environment of the atom. It is assumed that EXAFS oscillation is due to small change in final 

state |𝑓0⟩ of the free atom due to neighbouring atoms |Δ𝑓⟩. 

 |𝑓⟩ = |𝑓 + Δ𝑓0⟩ (42) 

The modulus of square of the matrix element is 

|⟨𝑓0 + Δ𝑓|ℋ𝐼|𝑖⟩|
2 = [⟨𝑓0|ℋ𝐼|𝑖⟩ + ⟨Δ𝑓|ℋ𝐼|𝑖⟩][⟨𝑓0|ℋ𝐼|𝑖⟩ + ⟨Δ𝑓|ℋ𝐼|𝑖⟩]

∗ 

≈ |⟨𝑓0|ℋ𝐼|𝑖⟩|
2 + {⟨𝑓0|ℋ𝐼|𝑖⟩

∗⟨Δ𝑓|ℋ𝐼|𝑖⟩ + 𝑐. 𝑐} 

= |⟨𝑓0|ℋ𝐼|𝑖⟩|
2 (1 + {

⟨𝑓0|ℋ𝐼|𝑖⟩
∗⟨Δ𝑓|ℋ𝐼|𝑖⟩

|⟨𝑓0|ℋ𝐼|𝑖⟩|2
+ 𝑐. 𝑐}) 

Where c.c is complex conjugate. Comparison with equation (41) the first term give absorption 

coefficient of free atom, μ0(E) so the second term must give EXAFS oscillation and 

 𝜒(𝑞) ∝ ⟨Δ𝑓|ℋ𝐼|𝑖⟩  

The initial wavefunction of the electron is strongly localized within the absorbing atom, so it can 

be approximated by delta function. The change in photoelectron wavefunction due to the 

neighboring atoms can be denoted by ψback.sc. (r). 
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χ(q) ∝ ∫ ψback. sc. (𝐫) exp(𝑖𝒌. 𝒓) 𝛿(𝒓)𝑑𝒓 = 𝜓𝑏𝑎𝑐𝑘.𝑠𝑐(0) 

For finding ψback.sc from only one neighboring atom at a distance R from the absorbing atom at 

the origin, we assume that the absorbing atom emit out going spherical wave (
𝑒𝑖𝑞𝑟

𝑟
) . The 

scattering atom will scatter incoming spherical wave into another spherical wave with amplitude 

proportional to the amplitude of the incident wave to a scattering length t(q). Also neglecting 

electrostatic potential between the electron and the ions of the lattice, assuming phase shift in 

wavefunction by δ(q), where δ(q) is the sum of phase shift produced by absorbing atom, δa(q) 

and from back scattering atoms, δback.sc. (q). 

𝜓𝑏𝑎𝑐𝑘.𝑠𝑐.(0) =
𝑡(𝑞)(𝑒𝑖(2𝑞𝑅+𝛿) + 𝑐. 𝑐. )

𝑞𝑅2
 

∝ 𝑡(𝑞)(
sin(2𝑞𝑅+𝛿)

𝑞𝑅2
)    

The factor of q is included in denominator to keep ψback.sc dimensionless. The neighboring atom 

at finite temperature vibrates about its mean position. If the r.m.s value of the displacement 

parallel to q is σ, the amplitude of the back scattered wave is reduced by the Debye-Waller factor 

of 𝑒−
𝑄2𝜎2

2  . For a scattering vector of Q=2q sin 90° =2q. 

Thus 𝜓𝑏𝑎𝑐𝑘.𝑠𝑐.(0) ∝
𝑡(𝑞) sin(2𝑞𝑅+𝛿(𝑞))

𝑞𝑅2
𝑒−2(𝑞𝜎)

2
. Also the hole created due to ejection of 

photoelectron is filled after a finite time, so the back scattered wave might not find atom at 

the same initial state with finite probability. Again, the photoelectron wave may be 
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scattered by other electrons in its round trip, so phenomenological mean-free pathlength Λ 

is introduced 

𝜓𝑏𝑎𝑐𝑘.𝑠𝑐.(0) =
𝑡(𝑞) sin(2𝑞𝑅 + 𝛿(𝑞))

𝑞𝑅2
𝑒−(𝑞𝜎)

2
𝑒−
2𝑅
Λ  

If the absorbing atom is surrounded by shells of neighbor atoms, with Nj atoms in the jth 

shell at a distance Rj. Finally 

 𝑞𝜒(𝑞) ∝ ∑ 𝑁𝑗𝑖 (
𝑡𝑗(𝑞) sin(2𝑞𝑅𝑗+𝛿𝑗(𝑞))

(𝑅𝑗
2)

) 𝑒−2(𝑞𝜎𝑗)
2

𝑒−
2𝑅𝑗

Λ    (43) 

2.5.3 Experimental setup: 

Sample for XAS measurement can be in powdered form or if it is metal it can be in thin foil 

form. If the sample is powdered, it is either spread in in kapton tape or filled in amorphous 

capillary glass tube. The XAS measurement requires highly intense continuous x-ray over a 

wide energy range which can be provided only by synchrotron radiation source. In 

Synchrotron, electrons are injected and accelerated around in a storage ring. These 

relativistic electrons are suddenly retarded using magnets and according to classical 

electrodynamics, X-ray photons are released [59] tangential to the ring.  

Before taking measurement of unknown sample, at least some information should be 

known about the absorbing element in unknown sample. X-ray with the energy in the 

range just below and above core electron binding energy is used for measurement. 

Polychromatic X-ray is allowed to pass through a double crystal monochromator. 

Monochromator is usually made up of single crystal of Si. It works on the principle of 
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Bragg’s law. For the given angle of incidence, it only reflects X-ray of particular wavelength 

or integer number multiple of the wavelength. Optics are arranged in such a way that 

higher order reflection are removed and only X-ray of selected wavelength is allowed to 

incident on sample. Ionization chambers are used for measuring intensities of X-ray. In 

figure 25 IC1 is the ionization chamber detector measuring intensity I0 incident on sample, 

IC2 is another detector used to measured intensity of transmitted X-ray. There is a 

fluorescence detector (optional) positioned as shown in diagram (25) if the X-ray causes 

any fluorescence in sample. For alignment of XAS graph obtained from unknown sample, a 

reference sample is placed between detectors IC2 and IC3. Reference sample is chosen in 

such a way that the absorbing element in unknown and Reference sample are same. For 

example, if Mo2C, MoO3 or Mo compound is unknown sample, Mo foil is usually used as 

reference sample. 

 

Figure 25: XAS experimental setup. IC1, IC2 and IC3 are ion chamber detectors used to detect intensity of X-ray photon incident 

on sample, transmitted from sample (or incident on reference sample) and transmitted from reference sample respectively. A 
double crystal monochromator is used. “Detector” is the detector for measuring fluorescence 
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Figure 26: Raw data of X-ray absorption coefficient (times thickness) vs Energy showing decrease in absorption coefficient with 

increase in X-ray energy but at Mo K -edge there is drastic increase in coefficient and it oscillates after that resulting XANES and 

EXAFS region 

After obtaining, intensity of x-ray beams incident and transmitted from sample and reference 

sample, graph is plotted for coefficient of linear absorption, μ(E) vs Energy, E. Coefficient of 

linear absorption is obtained using Lambert Beer law (34) 

 𝜇(𝐸)𝑡 = ln (
𝐼0

𝐼
) (44) 

The figure (26) shows graph of μ(E) times thickness (t) vs energy and so does equation (44). For 

a particular region in the sample thickness remains constant. The effect of thickness can be 

removed by proper normalization. 
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For normalization, pre-edge region is regressed about the edge energy, E0 between E0-300 eV 

and E0-150 eV, then the linear line extrapolated throughout the whole energy range (denoted by 

green line in fig (27). The pre-edge line is subtracted from the whole data (blue line) so that pre-

edge region of the data lies flat along X-axis. The post-edge data is also regressed with parabolic 

line about two point about E0+150 eV and E0 + 740 eV and extrapolated over whole energy 

range denoted by purple line in fig (27). The edge step Δμ0(E0), is calculated as the difference 

between post-edge line and pre-edge line at E0. Finally, normalization is done by dividing whole 

data by the edge step Δμ0(E0).  

 

Figure 27: μ (E) vs Energy graph for Mo2C. Pre-edge and post-edge fitting linear and cubical lines are drawn respectively for 

normalization. 
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Figure 28: μ (E) vs Energy graph of Mo2C after normalization. 

The equation used for calculating χ(q) is slightly modified from equation (41) because μ0(E) 

factor in denominator used in the equation is not well behaved. Its measured value can be 

negative or positive depending upon detector and amplifier settings. So it is replaced by edge 

step Δμ0(E0) for experimental purpose. 

 𝜒(𝑞(𝐸)) =
𝜇(𝐸)−𝜇0(𝐸)

Δ𝜇0(𝐸0)
   (45) 

The normalized data is ready for XANES and EXAFS analysis. It is independent of thickness 

and distribution of concentration of sample. The data can be used for Linear combination fitting 

in which XANES (or derivative μ(E) or χ(k)) spectra of unknown sample is fitted with linear 

combination of XANES ((or derivative μ(E) or χ(k)) of standard samples. 

Eventually, χ(q) or χ(k) is Fourier transformed to obtain χ(R). During analysis, χ(k) is 
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usually weighted with k, k2 or k3 depending upon the requirement in data.      

 

Figure 29: χ(k) weighted by k2 of Mo2C obtained from normalized μ(E) from figure  28 using equation 45 
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Figure 30: Fourier transform of k2.χ(k) of Mo2C from figure 29 

Further, EXAFS analysis is performed using Athena software to fit equation (43) 29 

 

2.6 UV-Vis Spectroscopy 

2.6.1 Introduction 

Electromagnetic spectrum includes radiation of very short wavelength from cosmic ray to very 

long wavelength radio waves. Ultraviolet (UV) and visible radiation comprises only a small part 

of it. 
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Figure 31: The electromagnetic spectrum [60] 

Electromagnetic radiation can interact with matter in a different ways including reflection, 

transmission, scattering, fluorescence, phosphorescence and absorbance etc. During absorption, 

matter stores it in a form of potential energy, which is a sum of its electronic, vibrational and 

rotational energies. 

Atoms or molecules present in material have discrete electronic energy states Ei. When the 

electromagnetic radiation of some matching frequency ν is incident on an atom at ground state, 

electron at ground state E1 jumps to some higher energy state E2 such that 

 𝐸 = 𝐸2 − 𝐸1 = ℎ𝜈 = ℎ (
𝑐

𝜆
) = ℎ𝑐𝜈̅ (46) 

where h is Plank’s constant (6.626 x 10-34 J s) and ν = c/λ.  λ is wavelength of incident 

electromagnetic radiation and 𝜈̅  is wavenumber which is usually measured in cm-1 or nm-1.  

Atom in its excited state (E2) is not stable, so usually it emits electromagnetic radiation of 

exactly same frequency ν by the transition of e- in excited state E2 to E1. If the absorption is in 

UV region, molecules absorbs energy and e-s jumps to higher energy state with matching energy. 
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The electrons in excited state might come down to ground state by losing energy in the form of 

heat or energy is exchanged to vibrational and rotational energy without radiation less process. 

 

Figure 32: The excitation process 

In case of absorption of ultraviolet or visible radiation by a molecule, its electron is promoted 

from an occupied orbital to an unoccupied orbital of greater potential. Usually, the most probable 

transition is from the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO). The lowest-energy occupied molecular orbitals are the σ -orbitals 

corresponding to σ-bonding. σ-bonding (single bond) are present in saturated hydrocarbons 

(Alkane). The π-orbitals lie at higher energy and are present in unsaturated hydrocarbons 

(Alkene and Alkyne). Then comes energy of orbitals which hold unshared pairs of electrons, the 

nonbonding (n) orbitals. The unoccupied, or antibonding orbitals (π* and σ*) are the orbitals of 

highest energy. Compounds can go multiple possible transition with absorption of radiation with 

different energies. 
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Figure 33:  Electronic levels and transitions 

Transition metal complexes: Transition metals have their valence electron(s) filled in five d-

orbitals and have capacity of holding 10 electrons with spin up and down in each orbital. These 

metals often form one or more stable ions with incompletely filled d-orbitals. When their metal 

ions bond with ligands to form a complex, electrons in ligands and electrons in the five d-orbitals 

of metal repel each other.  This repulsion causes splitting of d-orbitals, so some of the d orbitals 

gain energy and some lose. This difference in energy determines how much energy is absorbed 

when an electron is promoted from lower to higher level. This absorption of energy determines 

the colour of the complex. Hence, UV-vis spectroscopy can be used to determine how ligands 

are attached to central transitional metal ion in a complex. As an example Cu2+ (CuSO4) has 9 

electrons in its d orbital. In aqueous solution, each Cu2+ ion is surrounded by 6 water ligands. d 

orbitals of it split into two group of differing energy. When white light is passed to the Cu2+ 

solution, some of the energy is used to promote (or excite) and electron form an orbital in lower 

group to an available orbital in the upper group equal to the energy gaps between higher and 

lower d orbitals. In this case, yellow light is absorbed, so the solution appears blue 
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(complementary color of yellow). The absorbed light depends upon nature of transitional metal 

and ligands. If small amount of ammonia is added in CuSO4 solution, it appears deep blue. 

 

Figure 34: Splitting of d orbitals of Cu2+ ion in presence of water as ligand. 
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2.6.2 UV vis band structure: 

For an atom, the absorption spectrum consists of very sharp lines, as would be expected for a 

quantized process between two discrete energy levels. However, for molecules, the absorption 

usually occurs over a wide range of wavelengths, because molecules normally have many 

excited modes of vibration and rotation at room temperature (even at absolute zero). A molecule 

may undergo electronic and vibrational-rotational excitation simultaneously. For a collection of 

molecules, there are many possible transitions, each differing from others by only a slight 

amount. So spectrophotometer cannot resolve them. Hence it shows band absorption band 

peaked at the wavelength of major transition. 

The absorbance of electro-magnetic radiation depends upon concentration (c) and pathlength (l) 

and is given by Beer-Lambert’s law 

 𝐴 = 𝑙𝑜𝑔 (
𝐼0

𝐼
) = 𝜖𝑐𝑙 (47) 

Where ϵ is molar absorptivity of the sample. The absorbance is also equal to the difference 

between the logarithms of intensity of light entering the sample (I0) and the intensity of light 

transmitted (I) through the sample. 

UV-Vis Spectrophotometer: 

The radiation emissions come from two sources: a deuterium lamp and a tungsten lamp. The 

deuterium lamp emits light radiation over a wavelength of 190 nm to 800 nm and the tungsten 

lamp contributes radiation in mainly in visible region and near-infrared regions (370 nm to 1100 
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nm). A good source should provide sufficient radiant energy over the entire wavelength region 

and intensity should remain constant during measurement. Also there may be strong 

characteristic peaks of the source which might not be subtracted completely during sample 

measurement. Usually Far UV quartz cuvettes (170-2700 nm) of 1 ml, 2 ml, 3 ml with 1 cm 

pathlength are used, which are filled with sample in liquid or solution form in organic or 

inorganic solvent. Light emitted by source is allowed to enter through optical fiber and after 

absorption light is passed to detector through another optical fiber. Detectors convert 

electromagnetic radiation into current or voltage which is directly proportional to intensity of 

radiation through sample. An ideal detector has high spectral sensitivity, quick response time and 

high signal to noise ratio. Detectors used in spectrophotometer are photomultiplier tubes, photo 

emissive tubes, photodiodes arrays, silicon photodiode transducers, silicon photodiodes, 

photovoltaic cells and photoconductivity transducers. 

2.6.3 Experimental procedure for UV-vis measurement of Mo blue solution: 

Lamps of spectrophotometer are turned on at least 15 min prior to the experiments so that lamps 

reach full intensity and become stable. A blank scan even without cuvette was taken to see how 

good is the instrument working. An ideal blank scan should be 100% line in transmission mode. 

After that, cuvette filled 4/5 th with deionized water was placed in sample holder, and 

background scan was taken. Later, deionized water was replaced with Mo blue solution and 

scanned with same integration time. Background scan of deionized water was subtracted from 

scan of Mo blue solution to get transmission UV-vis spectrum of Mo blue solution and later it 

was converted into absorption spectrum. Mo blue solution was further diluted into 50%, 25% and 

12.5% and UV-vis measurement were taken to see any change in the position of peak with 
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change in concentration of Mo blue. As same cuvette was used for all the experiment, the 

pathlength during all the experiments were fixed. 

2.6.4 Application of UV-vis spectroscopy:  

This technique can be easily applied to find out the concentration of solution. So it is used in dye, 

ink and paint industries for quality control. It can also be used in quantification of organic 

materials and heavy metals in fresh water. It enables to study rate of reactions, and determine 

rate equations for reactions, from which a mechanism can be proposed. It is also used in 

pharmaceutical industries and in the study of enzyme kinetics.  
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Chapter 3 Characterization of GO used for experiments: 

3.1 Introduction 

 

Single layer GO (10mg/ml) was purchased from ACS materials. The XRD provided by ACS is 

shown in fig 35. The sharp peak at 7.34 Å is due to interplaner spacing between adjacent single 

layer GO and at 3.39 Å is due to remnant of graphite used to make GO. Spacing between 

adjacent layers of GO is higher than graphite because of intercalation of water molecules 

between the layers of GO bonded with hydrogen bond. The reported spacing between GO layers 

for dry GO is 6.1-6.3 Å and for hydrated GO is 12 Å [61]. Fig 35 doesn’t show any diffraction 

peak due to (100) and (110) Miller planes of graphene or graphite having spacing 2.13Å and 

(7.34 Å) 

(3.39 Å) 

Figure 35: XRD for GO provided by ACS Material for single layered GO. Diffraction peak at 7.34 Å and 3.39 Å 

are due to interplaner spacing between adjacent GO layers and precursor graphite layers (002) respectively 



www.manaraa.com

 

72 

 

1.23Å respectively. Huge background between 0-36℃ in diffraction confirms that GO is mostly 

amorphous.  

Before using as purchased GO in making GMO/r-GO and MoO2/r-GO nano-composite, it was 

characterized using XRD, TEM (in situ thermal annealing) and IR measurement. 

3.2 Result and Discussion: 

1. Diffraction (XRD and SAED): Unlike XRD provided by ACS material, XRD 

measurement of GO (fig 37) showed interlayer spacing of GO layers of 3.58 Å which is very close 

to (002) peak (3.4 Å) for graphite. The broad peak at 3.58 Å shows that ordering is poor and GO 

layers are arranged in random orientation. The corresponding peak in SAED is absent for before 

and after heating (fig 36 and 37) of GO in TEM because the layers of GO are perpendicular to the 

electron beam. SAED of before and after heating (fig 36 and 37) showed similar features at the 

real spacing of 2.13 and 1.23 Å corresponding to the (100) and (110) Miller planes of graphene 

present in GO. XRD showed shoulder peak at 2.13 Å but peak at 1.23 Å is invisible. As X-rays 

are electromagnetic waves and they are scattered by electron charge density of material through 

which they traverse, so at higher Bragg’s angle (larger reciprocal length) they show poor 

diffraction. Whereas electron beam due to their higher mass are scattered due to both electron 

charge density surrounding nucleus and nucleus, they show better diffraction peak at larger 

Bragg’s angle (reciprocal distance) 
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Figure 36:(a) SAED of GO before heating and (b) SAED of GO at 659°C 

 

Figure 37: Comparison of XRD and SAED (before and after in situ vacuum annealing) of as purchased single layered GO 
Diffraction curves are stacked over another for better comparison 

2. IR measurement: IR spectrum of GO before heating showed presence of hydroxyl 

(-OH) stretching and bending peaks at 3300 and 1625 cm-1 respectively, while these peaks are 

absent for GO after heating. This shows that GO before heating has water intercalated between 

its layer and it vanished after heating to 659℃. Beside hydroxyl, there is also presence of 
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carbonyl (1728 cm-1), carboxyl (1423 cm-1) and alkoxy (1087 cm-1) functional group in GO 

before heating. But after heating only C=C stretching peak at 1556 cm-1 and epoxy peak at 

1210 cm-1 are observed. This implies that most of the functional group with oxygen present in 

GO are removed during thermal annealing. Visible image of GO sample made in TEM grid in fig 

39 shows sample in transmission and reflection modes before and after heating. GO sample 

formed in TEM grid is translucent before heating (fig 39 a) and turns opaque after heating 

(fig 39 c). 

 

Figure 38: IR spectra of GO before and after heating 
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Figure 39: Visible image of GO sample in TEM grid for IR measurement. IR spectra were taken from the region between the 

crossbar. (a) Sample before heating in transmission mode (b) Sample before heating in reflection mode (c) Sample after heating 
in transmission mode (d) Sample after heating in reflection mode. 

3.3 Conclusion:  

Diffraction measurement done on as purchased single layered GO showed the inter layer 

spacing of GO layers are far smaller (3.58 Å) compared to claimed (7.38 Å). And the broad 

background observed in x-ray and electron diffraction shows GO is mostly amorphous. IR 

measurement done before heating showed GO has water present between its layers. Beside 

water it also has carbonyl, carboxy and epoxy peak along with C=C bonding. The oxygen 

present in different functional groups attached with GO makes it hydrophilic. After annealing 

GO is reduced but it still has epoxy functional group and C=C bonding. Due to loss of most 

of the oxygen containing group, it is difficult for water to form hydrogen bonding with 

reduced GO resulting into hydrophobic reduced GO. 

  

a b 

c d 
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Chapter 4 Characterization of Molybdenum blue solution: 

Amorphous sub-oxide of Mo is prepared by reduction of molybdic acid with Mo metal. So 

formed sub-oxide is highly soluble and blue in colour, so it is named as Molybdenum blue. The 

Mo blue when dried still carry water molecules at room temperature. Mo atom in Mo blue has 

oxidation state between +4 and +6. 

4.1 Introduction 

Molybdenum blue is a term applied for different polyoxometalates of molybdenum containing 

Mo(V), Mo(VI) and have blue colour. They may contain hetero atom such as phosphorus or 

silicon. They are amorphous and have complex molecules. The Mo blue reported here is also an 

amorphous oxide of molybdenum with deep blue colour prepared by reduction of Mo(VI) oxide 

by Mo metal in presence of water. It is known form different literatures that only Mo(VI) and 

Mo(IV) oxides of Mo are most stable oxides of molybdenum [62]. Formation of 

MoO3(orthorhombic) and MoO2(monoclinic) are favourable in oxidizing and reduction 

environments, respectively. Some other known crystalline form of Mo oxides with oxidation 

state between +4 and +6 are Mo4O11, Mo5O14, Mo8O23, Mo18O52.  

Ammonium molybdate ((NH4)2MoO4), ammonium heptamolybdate ((NH4)6Mo7O24.4H2O), 

sodium molybdate (Na2MoO4) and molybdenum phosphate (Mo3O16P4) are soluble compound of 

molybdenum, and they have been used as a precursor for formation of nanocrystals of MoO3 and 

MoO2 in different forms of carbons (GO, amorphous carbon and carbon nanotubes etc). Mo blue 

reported here is pure oxide of molybdenum, highly soluble in water and can be mixed with GO 
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(or any hydrophilic solvent) in any ratio to synthesize nano-composite of MoO2 and reduced 

graphene oxide. 

4.2 Preparation of Mo blue solution: 

While doing IR measurement on MoO3 water solution (molybdic acid) on aluminum flowcell 

with germanium window, it was discovered that the solution is reduced to blue solution. Similar 

results were obtained when the solution was mixed separately with aluminum, germanium, 

silicon, copper and tantalum. However, no change in colour were observed for mixing the 

solution with carbon (diamond and graphite), stainless steel and glass. Finally, Dr. Marvin 

Schoefield succeeded in reducing the solution to Mo blue solution using Mo powder which is 

described as follow. 

 Sparingly soluble 100 gm of MoO3 (Sigma Aldrich) powder was mixed with 200 ml of de-

ionized water for a couple of days. Clear water like, molybdic acid formed at the top was 

separated from MoO3 powder settled at the bottom. 100 mg of Mo metal powder (<150 μm, 

Sigma Aldrich) was mixed with molybdic acid. The clear solution of molybdic acid was reduced 

immediately by Mo metal, which was indicated by change in colour of clear water like solution 

into light blue. In couple of days, solution became deep blue. Finally, so formed Mo blue 

solution was separated from Mo metal settled at the bottom of beaker. 

4.3 Experimental method: 

For TEM measurements, a drop of Mo blue solution was dropped in 300 mesh Ni grid with 

silicon monoxide film and dried in air. Selected area electron diffractions (SAEDs) and bright 
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field imaging were performed using Hitachi single tilt holder inside a Hitachi H9000NAR TEM 

operating at an accelerating voltage of 300 keV, at a constant column pressure of 10-7 Torr. 

Gatan Orius SC CCD was used for capturing diffraction patterns and bright field images. For 

XAS and XRD measurement, Mo blue solution was filled into amorphous glass capillary tube of 

length 10 cm and internal diameter of 1 mm. Both measurements were performed at beamline 

12BM, Advanced Photon Source (APS) at Argonne National lab Chicago, IL. X-ray powder 

diffraction data was collected near Mo-K edge (19.95 keV) using Pilatus 100k detector and X-

ray absorption spectroscopy (XAS) data around Mo-K edge (20 keV) was collected using ion 

chambers (nitrogen filled). For IR measurement, a drop of Mo blue solution was spread over 

diamond window, and measured in a Bruker Hyperion 3000 IR Microscope using MCT detector. 

For comparison, MoO3 powder was spread over another diamond window. For background 

measurement, a scratch was drawn on diamond window using clean twiser, nearby Mo blue 

sample (or MoO3). For UV-Vis measurement, a rectangular Far UV quartz cuvette (Pike 

technologies) with pathlength 10 mm, was filled with Mo blue solution of different 

concentrations, and measured using single beam photospectrometer. Reference measurement was 

done with the same cuvette with de-ionized water and comparison was done with its precursor 

MoO3 solution (molybdic acid) in UV and visible region using two different sources for different 

regions. 

4.4 Results and discussions: 

TEM measurement: SAED patterns (not shown here) obtained didn’t show any diffraction spots 

or rings and had only amorphous background. Bright field images (not shown here) were also 

thick and unclear. 
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4.4.1 IR measurement:  

IR measurement of MoO3 and Mo blue dried on diamond windows are shown in fig 40. Both 

spectra have high transmission at around 1020 cm-1. Mo-O stretching at 997 cm-1 in MoO3 is 

shifted to 963 cm-1 in Mo blue. Mo blue has broad peak at 3300 cm-1 due to -OH stretching and -

OH bending vibration at 1613 cm-1 due to presence of water molecules surrounding the Mo 

oxide. Difference in IR spectrum of Mo blue confirms, it is chemically different from its 

precursor MoO3. 

4.4.2 UV-Vis measurement: 

UV-Vis measurement of MoO3 in solution in fig 41 shows why it is colourless as there is no 

absorption of light in visible region. But in case of Mo blue, there is strong absorption between 

500-950 nm and almost negligible absorption between 400-500 nm. The band between 400-

500 nm corresponds to violet, indigo and blue light. As light band from green to red are strongly 

absorbed, the solution only transmits and reflect blue light, so the solution appears blue. The 

absorption of light in visible region is due to the transition of the single unpaired electron in dxy 

orbital to the doubly degenerate Mo=O(π*) or two higher d(σ*) levels.   

Both MoO3 and Mo blue absorb in UV region at 280 nm (4.4 eV) and 240 nm (5.16 eV) 

respectively. These broad absorption band in UV region are ascribed to the ligand metal charge 

transfer (LMCT) bands originating from the promotion of electrons from the filled Mo=O (π ) 

levels to the d orbitals. The energy of this absorption band is sensitive to the local symmetry of 

Mo ion. For tetrahedral coordinated Mo LMCT and octahedral coordinated Mo LMCT bands 

usually appear at 270-340 nm and 220-270 nm respectively. Distortion of local symmetry of Mo 
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ion from octahedral to tetrahedral shifts the LMCT band to lower wavelength [62]. For MoO3 

solution, Mo ion is surrounded 6 oxygen ions (Octahedral symmetry) and it is observed from UV 

fig 41 that LMCT band for Mo blue is at lower wavelength. This blue shift in LMCT band for 

Mo blue solution hint toward more distorted structure of Mo blue compared to MoO3. 

4.4.3 XANES: 

Normalized absorption of X-ray of different oxides of molybdenum are shown in fig (42). The 

most striking feature of XANES analysis is presence of pre-edge peak at 20.007 eV for all Mo 

oxides in which oxidation state of Mo is greater than +4 (MoO3, Mo4O11, Mo5O14, Mo8O23 and 

Mo18O52). The absorption of X-ray at pre-edge corresponds to the 1s→4d transition of 

photoelectron in Mo atom. But this transition is forbidden by dipole selection rule (Δl = ±1), as 

also seen in the case of MoO2. In case of Mo oxides with oxidation state higher than +4, there is 

extensive mixing of oxygen p levels with the metal d orbitals upon formation of the molecular 

orbital (Mo = O). The added p-character makes this transition more allowed in Mo oxides with 

oxidation state greater than +4 compared to the compound without extensive d-p mixing (MoO2) 

[63] [64]. 

The comparative study of XANES of MoO3 and Mo blue in fig (43), both shows presence of pre-

edge peak at 20.007 eV and similar features after edge. This shows in Mo blue, oxidation state of 

Mo atom is greater than +4. 
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Figure 40: IR spectrum of Mo blue on diamond window compared with its precursor MoO3 

 

Figure 41: UV Vis measurement of Mo blue and its precursor MoO3 solution. Sharp absorption observed around 580 and 655 nm 

are due to characteristic emission peak of source and are irrelevant to the absorption by sample. 
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Figure 42: Mo K-edge XANES of Mo oxides [65] 

 

Figure 43: XANES of Mo blue along with MoO2 and MoO3. Pre-edge peaks are present in both Mo blue and MoO3 where as it is 
absent in MoO2. Also the features of XANES are quite similar for Mo blue and MoO3. 
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4.5 Conclusion: 

We demonstrate preparation of new soluble sub-oxide of Mo by reduction of MoO3 solution with 

Mo metal. The sub-oxide is amorphous as observed from X-ray and electron diffraction. UV-Vis 

measurement shows that sub-oxide has structure more distorted than its precursor MoO3. 

XANES analysis done of Mo blue shows similar pattern to its precursor MoO3 and it has 

oxidation state higher +4. 
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Chapter 5 Forming graphene and graphene monoxide from amorphous lacey 

carbon 

Graphene and graphene monoxide have been obtained by heating amorphous lacey carbon 

exposed to molybdenum solution containing a variety of MoxOy species at moderate temperature 

(600°C) in high vacuum (10-7 torr).  In-situ selected area electron diffraction patterns show 

evolution of the amorphous carbon structure, from room-temperature broad rings typical for sp2 

hybridization, into stronger and more defined graphene rings (centered at 0.213 nm and 0.123 

nm) and graphene monoxide rings (at 0.246 nm and 0.148 nm) upon heating above 600 °C.  This 

catalytic thermal method provides an alternative pathway to production of crystalline graphene 

and graphene monoxide from amorphous carbon. 

5.1 Introduction 

Graphene, due to its single layered two dimensional crystalline structure made up of sp2 

hybridized carbon, has attracted great interest in recent years. It has high specific surface area, 

extraordinary electronic properties and electron transport capabilities, high thermal conductivity 

[66] and is a semiconductor with zero bandgap [8]. It can be functionalized to make 

semiconducting device that function at high temperature. High specific surface area, and high 

electronic conductivity make it suitable for Lithium ion batteries [LIB] [67]. Large scale 

production of graphene is accomplished employing chemical methods such as chemical vapor 

deposition or via epitaxial growth of graphene on silicon carbide (SiC). Amorphous carbon 

which is a non-crystalline phase of carbon, consists of three-dimensional matrices of short-range 

ordered carbon atoms, and a mixture of orbital hybridization types (linear sp, trigonal planar sp2 
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and tetrahedral sp3) [68]. sp2 hybridized orbitals are thermodynamically more stable than sp3 

ones. The re-ordering of atoms of amorphous carbons to sp2 hybridized graphite can be 

accomplished by (1) catalytically active transition metals; (2) laser irradiation; (3) ion irradiation; 

(4) mechanical shear forces; or (5) high temperature annealing under high pressure. Marsh and 

Warburton summarized possible mechanisms of catalytic graphitization as: (1) precipitation of 

the dissolved carbon, (2) formation and decomposition of carbides, or (3) removal of distortion 

and defects within the crystallites by chemical processes [69]. Another interesting two 

dimensional material is graphene monoxide (GMO), which has structure similar to graphene, 

have quasi hexagonal unit cell with two carbon atoms bridged by double-epoxy pairs and have 

calculated direct bandgap of 0.9 eV [27]. Recent density functional theory (DFT) calculations 

have shown the formation of GMO is energetically favorable, and the bandgap can easily be 

tuned (0-1.35 eV) by applying strain [28] or creating defect in GMO structure [29]. 

In the present work, we report experimental evidence that multi-layered graphene and graphene 

monoxide can be generated from in-situ heating of amorphous carbon lacey films by catalytic 

property of the hydrated molybdenum oxide (MoxOy) at comparatively low temperature and 

pressure.  

5.2 Sample preparation 

50 mg Mo powder (Sigma Aldrich) was dissolved in 0.5 ml DI water and kept at room 

temperature and pressure until the color of the solution became deep blue (77 days for the 

experiments presented here). Infrared spectroscopy reveals that the dried deep blue solution is 

different from Molybdenum(VI) trioxide and Molybdenum(IV) dioxide, which is consistent with 
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the common wisdom of Molybdenum(V) pentoxide and water complex. 5l of the blue solution 

was diluted with 45 l of DI water and a 2 μl drop of the diluted solution was applied to a 200 

mesh Ni-grid covered with amorphous lacey carbon (Ted Pella). The sample was dried in air for 

a day.  

Sample for IR measurement was prepared by drying Mo blue solution on diamond window. For 

comparison, about 5g of MoO3 (Sigma Aldrich) powder was mixed with excess of deionized 

water for a couple of days. Sparingly soluble MoO3 in water forms molybdic acid. So formed 

few drops of clear solution of molybdic acid was deposited on diamond window and dried in air 

for overnight. After drying it looks much similar to powder MoO3. Also water insoluble MoO2 

(Sigma Aldrich) powder was spread over another diamond window for IR measurement for 

comparison (not shown here). 

Transmission electron microscopy 

Upon drying in air for one day the sample was characterized in a Hitachi H9000NAR 

transmission electron microscope (TEM) operating at 300 kV by selected area electron 

diffraction (SAED) and energy dispersive x-ray spectroscopy (EDX) both before and after in-situ 

heating to 762°C with a Gatan tantalum-cup holder.  Images and diffraction patterns were 

collected using a Gatan CCD camera in the TEM, including bright field images (BF), dark field 

images (DF), and SAED, and EDX data was recorded using Noran EDX detector. The heating 

rate was maintained at 30°C/min and column pressure was 10-7 torr. 

Infrared spectroscopy 
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IR measurement was performed in transmission mode using MCT detector with 256 scans on 

Bruker Hyperion 3000 IR Microscope using MCT detector. Small portion of diamond window 

with sample was cleaned by drawing a line (scratch) on it, using a sharp clean metal for 

background measurement and eventually, sample measurement was performed in area nearby the 

line  

5.3 Results 

In figure 44 , TEM BF images of the amorphous lacey carbon film after adding the blue solution 

are shown, both before (44 a) and after (44 b) heating in the vacuum of the TEM without 

exposure to intermediate energy electrons during heating. One representative area (A1) is chosen 

for SAED and EDX comparative studies according to its appearance before heating. Multiple 

areas (H1 to H5) in figs (44a) and (44b) are clearly holes in lacey carbon since their contrast is 

the same as that of background. Focusing on fig (44a), before heating, A1 is clearly lacey carbon 

that likely has some deposits of molybdenum solution with distinct boundaries. The contrast and 

structures in fig (44b) look different from (44a) due to heating and modified microscope 

alignment. (The heating occurs on a separate holder, and the sample is transferred back and forth 

from the single tilt (imaging) holder to the heating holder.) The boundaries in fig (44a) are more 

distinct. 
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 Figure 45: (a) Bright field TEM images of lacey carbon film (after in-situ heating at 762℃) with Mo blue solution at region A2 

with very small dark spots (b) Dark field image of same region after in-situ heating at 762℃ showing bright spots which look 

dark in bright field image. Spots are formed because these nano particles have different contrast than that of amorphous lacey 

carbon. 

Figure 44: Bright field TEM images of lacey carbon film with Mo blue solution before heating (a) and after in-situ 

heating at 762℃ (b).  Diffraction and spectroscopy data is taken from areas, like A1, that are initially amorphous and 
become ordered upon heating. Holes in the film are denoted as H1-H5. 
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After heating, in nearby TEM grid of region A1, some areas with lacey carbon with bright spot 

in bright field image are also found (fig 45 a) or dark spots scattered in lacey carbon (fig 45 b). 

These spots have different contrast compared to lacey carbon. 

The relative concentrations of carbon to molybdenum before and after heating reveal similar 

relative signals for carbon and molybdenum EDX peaks, with evidence for oxygen and carbon in 

both cases.  SAED taken at room temperature before heating (fig 48a) shows an amorphous 

background with two dim and broad rings that are very similar in position and intensity as those 

obtained from lacey carbon that has not been exposed to molybdenum (intensity profiles in 

fig 49).  The peak positions of these broad rings correspond to dominant sp2 bonding in the 

amorphous lacey carbon. It is notable that addition of the Mo blue solution and its subsequent 

drying does not appear to change the local carbon-to-carbon bonding.  

 

Figure 46: EDX at region A1 before heating showing the presence of carbon, oxygen and molybdenum in sample. Presence of 
sharp peak of Nickel is due to Ni grid. 
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Figure 48: SAED pattern of lacey carbon film with Mo blue solution (Region A1) before heating (a) and after in-situ heating (b) 

Figure 47: EDX at region A1 after heating showing similar presence of carbon, oxygen, molybdenum and nickel from grid 
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Figure 49: a) Intensity profiles of SAED of lacey C film exposed to Mo blue solution shows two broad peaks at room temperature 

(blue line) that are replaced by four diffraction peaks after heating (black line); b) Normalized intensity profiles of SAED of 
unheated lacey C with (blue line) and without (red line) Mo blue show great similarity in level of initial disorder. 

 

 

 

 

 

 

 

     

Figure 50: SAED of region A2 in lacey carbon with 

molybdenum blue after heating 
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Figure 51: Integrated line profile of SAED from region A2 in sample (fig 50 ) compared with XRD line profile of standard MoO2 

After heating, the broad amorphous rings become sharper and more intense with peak positions 

corresponding to real space distances of 0.213 nm and 0.123 nm, matching the {100} and {110} 

planes of graphene, respectively. Additional rings that correlate with real space distances of 

0.246 nm and 0.148 nm are detected (fig 48b), consistent with formation of graphene monoxide 

[27] . In-situ heating produces local variations in temperature, necessitating exploration of 

multiple regions on the same sample.  While the data shown above is representative of most 

observed regions, some sample regions like A2 (fig 45,50,51) show additional diffraction rings 

that can be indexed as monoclinic MoO2 indicative of changes in oxidation state during the 

heating process.   
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Figure 52: IR spectrum of Mo blue solution dried on diamond window compared with MoO3 solution also dried on diamond 

window 

5.4 Discussion:  

The BF image (fig 44a) of the lacey carbon film with MoxOy solution is clearly different from a 

typical lacey carbon film (not shown here), with in homogeneities in thickness, especially at the 

edges, and wrinkles and distortions. This suggests that the soluble oxide of molybdenum 

interacts with amorphous carbon, modifying the morphology and composition of the lacey 

carbon film. Areas similar to A1 are lacey carbon with a small amount of precipitate of Mo oxide 

and a large amount of carbon as detected by EDX (figs 46 and 47). The interaction of Mo blue 

solution with lacey carbon on heating converts lacey carbon into graphene as evidenced by 

detecting graphene rings (figs 48b and 49). Diffraction rings are observed instead of diffraction 

spots because layers of graphene formed in amorphous carbon are randomly oriented in two 

dimensions. Also circular average line intensity profile of the SAEDs, in fig 49a shows peaks for 
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graphene along with peaks for GMO. Apart from the peak developments, the intensity profile 

backgrounds for lacey carbon exposed to Mo blue solution are similar before and after heating 

for SAED that were taken at same region. Fig 49(b), shows circular average intensity line 

profiles of SAED from Area A1 exposed to Mo blue and from another lacey carbon film with 

similar thickness. As the two experiments were done with two different currents in the TEM, the 

intensity of Lacey carbon is normalized with that from area A1 at the initial scattering angle. 

Since Mo has higher scattering amplitude than that of C, its scattering amplitude is higher, 

decreases sharply and ends up higher than that for C with increase in scattering angle. This trend 

is observed in fig 49b that compares the two SAED line profiles for the Lacey Carbon to the 

Lacey Carbon with Mo solution.  They are normalized in the beginning and the intensity for 

Lacey C with Mo blue remains higher for most of the scattering angles.   

The mechanism to describe the effects we have seen is discussed here. We suggest that the Mo 

blue solution acts as a catalyst and is capable of removing distortion and defects within layers of 

amorphous lacey carbon and forms graphene as heat is employed. After heating to a relatively 

low temperature of 600°C defined diffraction graphene rings are observed. No additional rings 

that can be attributed to carbides are detected. According to [70], a graphitizable carbon 

possesses well-ordered lamellar type molecules but graphitization is prohibited due to defects or 

distortions within the lamellae and in the stacking sequences of these lamellae. Gillot et al. [71] 

suggest that an oxidation process may eliminate these defects and form graphite. During 

carbothermic reduction of Mo oxide having higher oxidation state such as MoO3, MoO2 is 

formed at around 400-700°C [36]. In the present case during higher heating in vacuum 

molybdenum dioxide is detected (Area A2) in SAED. IR measurement done on lacey carbon 
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with Mo blue solution shows strong Mo-O stretching peak similar to that of MoO3 before 

heating, but after heating it disappears as MoO2 so formed doesn’t show any strong peak. For 

comparison, IR spectra of Mo blue with Molybdic acid is shown in fig 52. Mo blue shows 

unique but still very much similar IR spectra to that of molybdic acid. Both shows presence of 

water molecule (3500 cm-1 -OH stretching modes and 1625 cm-1 -OH bending mode). Mo-O 

stretching modes in molybdic acid (954 and 900 cm-1) are both red shifted by 24 cm-1 compared 

to trimer of MoO3 [72]. The spectrum of Mo blue behaves similar to its precursor molybdic acid 

with some shifting except it has only shoulder at around 900 cm-1. Thus the Mo blue solution 

dissociated into Molybdenum dioxide and oxygen, and the formed oxygen removes defects 

between the original layers and forms graphene.  

Table 1: Comparison of spacing of diffraction rings formed in Lacey carbon and GO 

G and GMO ring (from 
literature [27] ) 

Lacey C rings 

Before heating (nm) After heating (nm) 

I) 0.123 nm(G) 0.123 ± 0.01 0.123 ± 0.003 

II) 0.213 nm(G) 0.210 ± 0.01 0.210 ± 0.006 

III) 0.260 nm(GMO) - 0.246 ± 0.006 

IV) 0.152 nm(GMO) - 0.148 ± 0.003 

 

5.5 Conclusion: 

Here, it is shown that graphene and graphene monoxide can be formed from amorphous carbon 

and a soluble oxide of molybdenum that are heated in high vacuum at temperatures in excess of 

600°C.  The catalytic thermal method demonstrated here can be an effective alternative to 
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convert amorphous carbon into crystalline graphene and graphene monoxide.  Further studies of 

different ratios of C, Mo and O will be forthcoming to elucidate the interaction between these 

three components in more detail. 
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Chapter 6 : Catalytic synthesis and structural characterization of Graphene 

Monoxide 

Nanocomposite of Graphene monoxide and reduced graphene oxide are synthesized in a large 

scale (milligram) by heating the mixture of graphene oxide and molybdenum blue solution 

containing MoxOy.zH2O at moderate temperature (650°C) in high vacuum (10-7 torr). Selected 

area electron diffraction and X-ray powder diffraction show evolution of graphene monoxide 

diffraction rings (at 2.54 Å and 1.47 Å) after heating. Nanocomposite of reduced graphene oxide 

and graphene oxide are randomly oriented layered structure with spacing of about 3.65 Å. 

Keywords: EXAFS, XRD, SAED, IR, Bright field image, Dark field image 

6.1 Introduction: 

Graphene, a monolayer of graphite having two-dimensional (2D) hexagonal (honeycomb) 

structure of carbon atoms is of great interest because of its exceptional electrical, mechanical and 

thermal properties [73] [74] [75] [76] [77] [78]. However, graphene is a zero bandgap 

semiconductor and it can’t have practical application in making semiconducting device [79]. 

Also manufacturing of graphene by mechanical exfoliation method is commercially not viable. 

Hence it is chemically functionalized to create tunable bandgap. GO is a graphene like material 

manufactured chemically by exfoliating graphite by modified Hummers process [80]. IR 

measurements on GO manufactured by Hummers method shows that it is composed of 

functionalized graphene sheets decorated by functional groups such as -COOH, C-O-C, C=C and 

R-OH. Nanoporous graphene and multilayered GO exhibits unlimited potential to be used as 
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membranes for desalination with 100% salt rejection [26]. However, GO doesn’t have many 

other direct applications as it is non-stoichiometric, thermally unstable and a poor conductor of 

electricity [81]. 

A graphene based material, graphene monoxide (GMO) was first produced in a nanogram scale 

by thermal annealing of multilayered GO deposited at Mo grid in a TEM (Transmission emission 

microscope) [82]. GMO has centered-rectangular (quasi-hexagonal) lattice structure with two 

carbon atoms of graphene unit cell bridged by double epoxides with increase in lattice parameter 

to 3.09 Å (from 2.46 Å in graphene) and angle between them is 124° (from 120° in graphene) 

and 20% increase in planer area of the unit cell area [82]. First-principles calculations predict 

GMO as an intrinsic semiconductor with a bandgap of about 1eV, and by applying tensile 

uniaxial strain along zigzag direction it can be switched between indirect and direct 

semiconductor with tunable bandgap (0-1.3 eV) and this tunable electronic properties of GMO 

could find potential application in future semiconductor devices [83]. The strong anisotropic 

nature of direct bandgap GMO causes electrons and holes to preferentially move along the 

zigzag and armchair directions, respectively, minimizing the rate of recombination between 

electrons and holes, making it desirable material for photovoltaic devices and also the oxygen 

atom in GMO could act as adsorption sites and making it potential candidate in sensors and 

lithium ion battery applications [83]. 

According to DFT calculations, all the possible sequences of the GMO bilayer show the typical 

interlayer bonding characteristics of two dimensional bilayer systems with a weak van der Waals 

interactions. Band gap energy of bilayer GMO (0.418-0.448 eV) is slightly smaller than that of 

the monolayer (0.536 eV). These band gaps are suitable for making electric device application. 
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Band gap of bi-layer GMO is external electric field sensitive and at small critical electric field 

(Ec=0.22-0.30 V/Å) semiconductor to metal transition occurs. Hence bilayer GMO is the strong 

candidate for nanoelectronics [84]. 

6.2 Experimental methods 

6.2.1 Molybdenum blue solution preparation 

200 mg of MoO3 powder (Sigma Aldrich) was mixed with 200 ml of de-ionized water for a 

couple of days at room temperature and pressure. Clear solution (molybdic acid) was separated 

to another beaker and 100 gm of Mo metal powder (< 150 μm diameter) (Sigma Aldrich) was 

added to the molybdic acid at room temperature and pressure. Immediately, the solution turned 

blue and became deep blue in a couple of days. Finally, the solution (Mo blue) was also 

separated from Mo powder. 

6.2.2 Nanogram scale: Reduction of GO/Mo blue deposited on Ni TEM grid:   

GO (10mg/ml) synthesized by modified Hummers method was purchased from ACS nano and 

was mixed with Mo blue solution in the ratio 1:2 by volume. The mixture was diluted by mixing 

with de-ionized water in the ratio 1:10. Diluted GO 2 μl of the mixture was drop casted onto 300 

mesh Ni TEM grid and dried in air, to form self-supporting, multilayered GO/Mo blue sample. In 

situ heating of sample was done using a Gatan tantalum-cup heating holder inside a Hitachi 

H9000NAR pressure TEM operating at an accelerating voltage of 300 kV, at a constant column 

pressure of 10-7 Torr. Gatan Orius SC CCD was used for capturing high resolution images, 

selected area electron diffractions (SAEDs), bright and dark field images. The sample in TEM 

grid was in situ heated at the rate of about 30°C per minute up to 650 °C. IR measurement was 
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done on the same sample before and after in-situ heating using Bruker Hyperion 3000 IR 

Microscope using MCT detector. 

6.2.3 Milligram scale: Reduction of GO and Mo blue solution  

10ml of GO (10mg/ml) and 20 ml of Mo blue solution were mixed uniformly by sonicating the 

mixture for an hour. The mixture was poured into 3 cavities of silicone "Slide Duplicating Mold" 

each 1" x 3" x 3/32" (Electron Microscopy Sciences). After drying the mixture at room 

temperature and pressure, thin dark GO/Mo blue paper was obtained. The paper like sample was 

transferred to Alumina coated tantalum boat (3" x 3/4" x 3/8"). The boat was heated (Joule's 

heating) at pressure of 8 x 10-6 torr, with constant rise of current (1 amp/min) from room 

temperature to 280°C in 32 mins at about 8°C/min then held constant for 30 mins to keep the 

pressure below 1.2 x 10-5 torr. The current flowing through the boat and potential difference 

across it were measured to calculate temperature of boat and correlated to temperature measured 

from a radiation pyrometer above 550⁰C. Residual gas analyzer(RGA) was used to analyze gas 

released during heating. The boat was further heated very slowly up to 290°C while keeping the 

constant pressure (below 1.2 x 10-5 torr) by increasing current by 4 amp in 70 mins. Current 

through boat was increased by 1amp/min for another 6 mins to reach temperature of 340°C. At 

340°C there was second burst in pressure (3.0 x 10-5 torr), so heating was stopped for another 6 

mins. After that the boat was again heated at 1 amp/min till 650°C at 5°C rise in temp per min in 

70 mins and stayed at the temp for another 10 mins.  

After reaching 650°C in 165 minutes, the current was terminated and the sample was allowed to 

cool. The heated sample of less than 1mm diameter was crushed with a mortar and pestle and 
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formed a powder that was dispersed in methanol. For TEM measurements, a drop of mixture 

with methanol was dropped on 300 mesh Ni grid with lacey carbon and dried in air. The 

remaining annealed sample was crushed into powder and filled into amorphous glass capillary 

tube of length 10 cm and internal diameter of 1 mm for X-ray powder diffraction measurement 

near Mo-K edge (19.95 keV) using Pilatus 100k Detector and X-ray absorption spectroscopy 

(XAS) measurement around Mo-K edge (20 keV) using ion chambers (nitrogen filled) at 

beamline 12BM, Advanced Photon Source (APS) at Argonne National lab Chicago, IL. About a 

mm diameter of paper like heated sample was crushed and sprayed over diamond window for 

infrared measurement. To compare XRD and XAS of the standard MoO2, MoO3, Mo2C powder 

(Sigma Aldrich) were spread on Kapton tape were also collected. For IR measurement, tiny 

amount the powder was spread over diamond window, and measured in a Bruker Hyperion 3000 

IR Microscope using MCT detector. Two dimensional SAED and XRD pattern were reduced 

into one dimensional by using Nika software [85]. X-ray absorption spectroscopy (XAS) data 

were processed by using Athena software and EXAFS data were fitted by Artemis using 

theoretical standards from FEFF [86]. 
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Figure 53:(a) Unit cell of two dimensional GMO (top view) with lattice vectors a and b equal to 3Å and angle between them 

equal to 122.64℃. (b) Model of 3D GMO in which GMO layers are in AB stacking (side view) similar to graphite having 
separation of 7.3 A between alternate layers.  

 

Figure 54: (a) SAED of nanogram scale GO/GMO composite after in-situ heating GO and Mo blue mixture in Ni TEM grid. Ring 

I and II are diffraction rings due to graphene (2.13 Å and 1.23 Å due to graphene planes (100) and (110) respectively). Rings III 

and IV are GMO rings which starts to form after 550°C during in-situ heating (2.68 Å due to (100) and (1-10) GMO planes and 

1.54 Å due to GMO (110)). (b) Bright field image of GO/GMO composite from where SAED pattern was obtained. 

b =3Å 

a =3Å 

1.921Å 

1.6Å 

a b 
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Figure 55:Milligram scale: (a) SAED of milligram scale GO/ GMO composite showing rings similar to that in nanogram scale, 
(b)bright field image and (c) dark field image 

 

Figure 56: XRD and SAED diffraction integrated line profile of r-GO/GMO nanocomposite (milligram scale) in reciprocal 

distance compared with r-GO/GMO nanocomposite (nanogram scale) and simulated AB stacked GMO using X-ray powder 
diffraction 
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Figure 57: Comparison of XANES of r-GO/GMO sample (milligram scale) with standard Mo2C, Mo metal powder, MoO3 and 
MoO2 powder. All of the XANES plots are stacked along vertical axis. 

 

Table 2: Pre-edge and Edge peak energies of Mo, Mo2C and Mo-oxides with milligram scale GO-GMO 

Sample Pre-edge, (eV) 

Experimental 

Pre-edge, (eV) 

[87] 

Edge Energy, Eo (eV) 

Experimental 

Edge Energy, Eo (eV) 

[87] 

Mo powder Absent Absent 20008.5 NA 

Mo foil (reference) Absent Absent 20009.5 20008.1 

Mo2C Absent Absent 20008.5 NA 

MoO3 20001.5 20004.9 20015.5 20013.6 

MoO2 Absent Absent 20012.0 20011.5 

Milligram Scale GO-
GMO 

Absent Absent 20012.0 NA 
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Figure 58: Milligram scale: (From bottom) Fourier transform of χ(k) of milligram scale GMO and standard MoO2. The first 

peak at 1.5 Å is due to back scattering of photoelectron wave from nearest 6 oxygen atoms of the reference Mo atom. The second, 

third and fourth peaks from left are mainly due to scattering of the wave from first (1 Mo atom), second (1 Mo atom) and third (8 

Mo atoms) nearest Mo neighbors respectively. The EXAFS shows very much similar structure of MoO2 and Milligram scale 

r-GO/GMO, but in short range. Also simulated EXAFS of MoO3 and EXAFS of experimental Mo2C are presented for 
comparison. 

 

Figure 59: IR spectrum of (From bottom) GO, mixture of GO and Mo blue solution, nanogram scale r-GO/GMO, milligram scale 
r-GO/GMO and nanogram scale r-GO.  
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6.3 Results and discussions: 

6.3.1 TEM measurement: 

a. Nanogram scale: SAED performed on the sample (fig 54 a) shows diffraction rings due 

to graphene planes (100) spacing 2.13 Å (Ring I) and (110) spacing 1.23 Å (Ring II) before 

heating and addition of two more rings due to the formation of GMO after reaching temperature 

of 550°C spacing 2.68 Å (Ring III) due to GMO planes (1-10) and (100), and 1.54 Å (Ring IV) 

due to GMO plane (110). The measured real spacings of graphene rings are consistent with 

corresponding spacings in graphene or graphite, however real spacing of both Ring III and IV 

due to GMO are larger than spacing of 2.60 Å and 1.52 Å respectively as mentioned in [82] for 

GMO. Small increment in the real spacing of diffraction rings of GMO is due to high flexibility 

in length of lattice vectors and angle between lattice vectors in the unit cell of GMO. In graphene 

bond between carbon atoms is rigid so the real spacing of diffraction rings due to its planes are 

always constant. However, in case of GMO, DFT theory has predicted bridging bond of double 

epoxide between carbon atoms in GMO can be highly flexible with small stress. Nanogram scale 

r-GO/GMO composite is only few layered and the GMO unit cell exist in relaxed state with 

minimal strain. Fig 54 b is the bright field image corresponding to SAED shown in fig 54 a. The 

image doesn’t show much change in contrast of the sample during heating.  

b. Milligram scale: SAED of milligram scale r-GO/GMO (fig  55 a) composite doesn’t 

look much different than that of nanogram scale. Real spacing of diffraction Rings I and II due to 

graphene are exactly same as expected but real spacing of the Rings due to GMO are decreased 

to 2.54 Å (Ring III) and 1.47 Å (Ring IV) in SAED. These real spacing of Ring III and IV were 

used to calculate lattice parameters and a GMO model is obtained (fig 53 a). Dark field and 
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bright field image corresponding to the SAED pattern in fig  55 b and  55 c shows uniform 

material with homogenous contrast. 

6.3.2 XRD Measurement: 

Powder-XRD pattern of milligram scale r-GO/GMO composite is compared with its own SAED, 

its precursor unheated GO and simulated XRD pattern of two dimensional planes of GMOs 

arranged in AB stacking in fig 56. As TEM sample is very thin and its planes are always oriented 

perpendicular to the electron beam, its SAED pattern is formed only due diffraction from its 

Miller planes parallel to c-axis. Whereas during powder XRD measurement, powdered samples 

are randomly oriented, so XRD pattern shows all possible diffraction planes including Miller 

planes perpendicular to c-axis of crystal.  

XRD of unheated GO and r-GO/GMO composite have huge broad peak at 3.65 Å (0.274 Å-1) 

(fig 56), is due to interplaner spacing between GO layers (or GMO layers), which is analogous 

to (002) peak in graphite. This diffraction peak is forbidden in SAED due to orientation of plane 

of the 2D crystals lying perpendicular to electron beam. XRD peak due to (100) graphene plane 

in unheated GO and SAED peak due to milligram and nanogram scale r-GO/GMO are exactly 

positioned at 2.13 Å. In contrary, the corresponding XRD peak of milligram scale r-GO/GMO 

is shifted to 2.09 Å. This mismatching of (100) graphene peak in two diffraction techniques for 

the same milligram scale r-GO/GMO composite is an evidence of some sort of periodicity along 

c-axis in newly formed GMO crystals. Also the spacings of the Ring III and Ring IV in XRD of 

milligram scale r-GO/GMO are lowered to 2.47 Å and 1.45 Å respectively which are smaller 

than spacings obtained from SAED of the same sample. This shifting of peaks between two 

different diffraction techniques can only be explained if we consider periodic stacking of two 
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dimensional planes in vertical direction. r-GO or GMO planer crystals are randomly stacked 

together with periodicity for few layers in vertical direction. To understand the effect of 

periodicity of 2D crystals, a hypothetical 3D model of GMO (fig 53 b) is constructed with AB 

stacking (similar to graphite) having interplaner spacing 3.65Å obtained from XRD for 

r-GO/GMO (fig 56) and powder XRD simulation is obtained (fig 56). Also powder-XRD is 

simulated for 3D GMO model with middle layer of GMO translated with different distances 

along a and/or b directions (not shown here). Intensity of simulated powder-XRDs vary a lot 

with different types of stacking but the position of peaks remains unchanged. The comparison 

of experimental XRD and SAED of milligram scale r-GO/GMO composite with simulated 

powder-XRD in fig 56 shows shifting of XRD peaks for Ring III and Ring IV are due to 

presence of diffraction peak due to (101) and (102) planes respectively.  

As one of the precursor Mo blue used in making the sample r-GO/GMO is an amorphous oxide 

of Mo, the XRD pattern of milligram scale r-GO/GMO was compared with available JCPDS 

files of oxides and carbides of Mo (not shown in fig). None of the available JCPDS files match 

with XRD of the sample and it shows absence of any crystalline form of Mo compound present 

in the milligram scale nanocomposite. 

XAS measurement: 

To understand the structure of Mo compound present in the composite of r-GO/GMO, XANES 

(fig 57) and EXAFS (fig 58) of the composite were compared with standard oxides and carbide 

of Mo. Standard MoO3 has strong pre-edge peak at 20001.5 eV and similar pre-edges are also 

observed in sub-oxides of Mo such as Mo4O11, Mo5O14, Mo8O23 and Mo18O52  [88] but absent in 

Mo2C, Mo metal and MoO2. XANES as well as EXAFS of the GMO composite is very much 
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similar to that of MoO2 (fig 57 and 58). XANES analysis done for the GMO composite shows 

that more than 85% of the sample is MoO2 and only about 10% of the sample may have MoO3. 

Also edge of MoO2 and the sample are same. The EXAFS analysis done on milligram scale 

sample shows structure similar to MoO2 within short range. 

6.3.3 IR measurement: 

Change in bonding or chemistry during heating was examined by IR measurement in normal 

incidence transmission mode. The mixture of GO and Mo blue showed IR peaks due to 

functional groups hydroxyl (3300 cm-1 and 1625 cm-1), carbonyl (1708 cm-1), carboxyl 

(1425 cm-1), epoxide (1245 cm-1) and alkoxy (1080 cm-1) and C=C stretching (1580 cm-1) 

including Mo-O stretching (900 cm-1) due to Mo blue compound (fig 59). After annealing 

hydroxyl, carbonyl, carboxyl, alkoxy peaks vanishes from the sample making it hydrophobic. 

Also Mo-O stretching peak disappears indicating chemical change in Mo blue composition. 

However, C=C (1560 cm-1) stretching remains an asymmetric fano line shape, activated due to 

the defects. Also epoxy peaks (1215 cm-1) is red shifted after heating.  

 

6.3.4 Conclusion: 

We have demonstrated a thermal reduction method for the nanogram scale as well as milligram 

scale production of r-GO and GMO nanocomposite in high vacuum. Our XRD measurement 

performed on milligram scale nanocomposite also demonstrated, so formed GMO is multilayered 

with interlayer spacing similar to its precursor GO about 3.65Å. We found the lattice vectors and 

angle between them for 2D unit cell of multilayered GMO is lowered to 3Å and 122.64℃, which 
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is due to the stress applied on GMO crystal due to stacking. Small variation in lattice parameters 

were observed for both nanogram scale as well as milligram scale nanocomposites, which are 

consistent with the prediction made by DFT theory for highly flexible bonding between carbon 

and oxygen atoms. EXAFS and XANES analysis performed on the material confirmed the 

formation of amorphous MoO2 along with r-GO and GMO. These amorphous MoO2 molecules 

have very short range of periodicity (∼3 Å) and hence they are not observed in TEM imaging 

and also don’t show any diffraction. 
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Chapter 7 : Formation of graphene monoxide by electron bombardment and 

in situ heating mixture of graphene oxide and chromium trioxide 

As a part of finding new ways of making GMO using different catalytical methods, GMO was 

successfully prepared by in situ electron bombardment (300 keV) of the mixture of GO and 

chromium trioxide in TEM (10-7torr of pressure) at room temperature. In situ SAED showed that 

further heating of sample favors in removing amorphous background and improve crystalline 

quality at very low temperature of 250℃. SAED performed with tilted sample confirms so 

formed GMO is two dimensional. 

 

7.1 Introduction 

After successfully synthesizing of GMO/r-GO composite from GO in presence of Mo metal 

(grid, wire or powder), MoO3 solution and Mo blue solution, we tried to make GMO using 

transition metals similar to molybdenum. The first choices were easily available transitional 

metals such as Ni, Cu, Au and Pt which have been well known for their catalytic properties for 

very long time. However, none of these metals were useful in making GMO. Then we decided to 

use metal in the same group of periodic table with Mo. Dr. Schoefield, heated mixture of 

tungsten wire and GO in Ni grid. But GMO wasn’t formed with tungsten. Later, similar 

experiments were performed with oxides of chromium. The easily available oxides of chromium 

are chromium (VI) oxide (CrO3) and chromium (III) oxide (Cr2O3). Among these two oxides, 

CrO3 was a better choice because it is very much similar to MoO3 as both of them have similar 

formula and have strong oxidizing strength. CrO3 was a better choice also because of its high 
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solubility, unlike MoO3 which is sparingly soluble in water. Cr2O3 wasn’t a good choice as it 

wasn’t soluble and doesn’t have any oxidizing property. Process of formation of GMO with two 

different concentrations of CrO3 is explained in the following section. 

7.2 Experimental: 

1% CrO3 was prepared by dissolving CrO3 crystals with de-ionized water. GO (10mg/ml) 

synthesized by modified Hummers method was purchased from ACS nano. Two different 

samples were prepared by mixing GO and CrO3 solution in different ratio.  

Sample1: GO (10mg/ml) and 1% CrO3 were mixed in the ratio 1:2 and a drop from the mixture 

was drop casted onto 300 mesh Ni TEM grid and dried in air to form self-supported multilayered 

sample.  

Sample2: 0.4 ml of GO (10mg/ml) and 0.2 ml of 1% CrO3 were mixed (GO: 1% CrO3 = 2:1), 

further diluted by adding 2 ml of water. A drop from the mixture was drop casted onto 300 mesh 

Ni TEM grid and dried in air for a day to form self-supported multilayered sample.  

In situ heating of sample was done using a Gatan tantalum-cup heating holder inside a 

Hitachi H9000NAR pressure TEM operating at an accelerating voltage of 300 kV, at a constant 

column pressure of 10-7 Torr. Gatan Orius SC CCD was used for capturing the bright field 

image, dark field image and selected area electron diffraction. 

7.3 Results: 

When Sample1 was exposed to electron beam of 300 keV, it initially had only two diffraction 

rings (Ring I and II) due to graphene corresponding to planes (100) and (110) as shown in fig 

60 (a). Diffraction rings were broad and have amorphous background probably due to poor 
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crystallinity and thickness of sample. During acquisition of SAED pattern, two more rings 

emerged having real spacing 0.258 nm and 1.49 nm (Rings III and IV in fig 60) quite close to 

spacing of GMO rings as described in literature [27]. During heating intensity of diffraction rings 

slightly improved throughout the sample and attained saturation at temperature less than 250℃. 

SAED taken nearby the same region at 659℃ is also shown in fig 60(b) and it shows slightly 

 

Figure 60: (a) SAED of Sample1, right after exposure to electron beam, showing diffraction rings due to Graphene (Rings I and 

II) and GMO (Rings III and IV) (b) SAED at another region at temperature 659℃ also showing diffraction rings due to 
Graphene and GMO 
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Figure 61: SAED of Sample2 (a) SAED at region 1 before heating showing ring I and II (b) SAED at region 1 at 601℃ showing 

bright ring I and II and faint ring III and IV. (c) SAED at region 2 showing brighter rings I, II, III and IV. (d) SAED at region 3 
with sample2 tilted at 15° resulting in blurring of diffraction rings at top and bottom compared to sides.  

sharper diffraction rings with less background. 

Effect of electron beam on Sample2 was negligible. Layers of GO formed on grid was thin and 

had lower concentration of CrO3. Region 1 having comparatively thin and bright diffraction rings 

I and II due to graphene were chosen for in situ SAED (fig 61 a) and it started forming 

diffraction rings III and IV after heating above 100℃. All the rings continued to grow brighter 

and thinner with increase in temperature. SAED of the same region 1 at 601℃ is shown in fig 61 

(b) with faint ring III and IV. However, there were areas which were previously thicker before 

heating showed brighter rings I, II, III and IV at 601℃ (fig 61 c). Sample2 in the grid was tilted 

to see its effect on diffraction pattern. Fig 61 (c) has depicted blurring of all the rings during 

tilting by 15°. 

7.4 Discussion: 

Sample1 had greater thickness (because of less amount of water) and larger concentration of 

highly reactive (oxidizing) CrO3. When electron beam with 300 keV bombarded sample, it might 

have dissociated some CrO3 releasing highly reactive atomic oxygen. This atomic oxygen might 
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have selectively oxidized graphene oxide to from GMO. Formation of rings III and IV in 

fig  60 (a). Increase in temperature helps in removing water and other functional group 

responsible for amorphous background, so heating favored the formation of brighter rings in 

fig 60(b).  

However, in Sample2, sample on grid was thin layered (diluted sample) and had less 

concentration of CrO3 so only electron bombardment wasn’t enough to create enough GMO, so 

the diffraction rings III and IV were almost invisible in fig 61 (a). Even heating to 601℃ 

couldn’t produce bright rings of GMO (fig 61 b). But at thicker region, which had higher amount 

of CrO3 intercalated between the layers of GO, showed brighter GMO rings after heating to 

601℃ (fig 61 c). To confirm, 2D nature of GMO, the sample was tilted (fig 61 d) and as 

expected both graphene and GMO rings blurred at top and bottom. 

7.5 Conclusion: 

With electron bombardment and in situ heating at lower, two dimensional GMO was formed 

from mixture of GO and CrO3. The catalyst CrO3 is not only alternative to previously used 

catalyst Mo, MoO3 and Mo blue but also more efficient in producing GMO from GO. Our work 

(tilting SAED experiment) also supports GMO as a two dimensional structure of only carbon and 

oxygen, and our method of electron bombardment might be useful in making large amount of 

GMO for nano electric devices. 
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Chapter 8 : Synthesis of Molybdenum dioxide/reduced GO nano-composite  

Homogeneous nanocomposite of molybdenum dioxide/reduced-graphene oxide (MoO2/r-GO) 

was successfully synthesized by solution based method, mixing GO and Mo blue solution 

followed by heating at high vacuum (10-6 torr) at low temperature of 650°C. The tunable 

composition of nano-composite was prepared without using any surfactant and any toxic 

ammonia based chemical. The material was highly electrostatic and was characterized using 

TEM, XRD and EXAFS. Similar composite was also prepared inside TEM in nanoscale by 

heating GO deposited onto TEM Mo grid under similar conditions. 

8.1 Introduction: 

Graphene, a two dimensional, hexagonal, honey comb structure of carbon has attracted a lot of 

interest due to its unique electronic and mechanical properties [73] [74] [75] [76] [77] [78]. 

Mechanical exfoliation of graphite [74] [89] [90], carbon vapour deposition (CVD) [91] [92] 

[93] [94] and epitaxial growth on silicon carbide [95] [96] and ruthenium [97] are a few methods 

to produce pure and single layered graphene. But these methods are expensive for mass 

production. Chemical exfoliation of graphite using strong oxidizing agents, by modified 

Hummer's method is the cheapest method of synthesizing graphene like material called graphene 

oxide (GO) [80]. However, GO is insulating [91], non-stoichiometric and composed of 

functional groups such as epoxide, carbonyl, carboxyl and hydroxyl. These functional groups 

make GO hydrophilic and enables it to mix homogeneously with solutions of metal oxides. The 

mixture of GO and metal oxides can be reduced either chemically or thermally to obtain reduced 

graphene oxide (r-GO), which has large surface area with significant increase in conductivity 
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[98] [99]. 

MoO2, due to its distorted rutile structure possesses metallic conductivity (8.8 x 10-5-Ω cm) and 

has high melting point with high stability. Its metal like conductivity could also be attributed to 

its high density of states in the valence band energy region [100]. Thus MoO2 is an excellent 

candidate for sensors, recording media, super capacitors, electrochromic devices and lithium-ion 

batteries [101]. MoO2 has high theoretical specific capacity of 839 mAhg-1 which is larger than 

theoretical specific capacity of traditionally used anode material, graphite (373 mAhg-1). Also the 

higher density of MoO2 makes it a suitable material for LIBs [102]. However, bulk metal oxide 

electrodes pulverize during the volume change when taking Li ions, leading to rapid decay in 

capacity and limiting the potential use [103]. MoO2 as nanomaterial composites with carbon 

nanoparticles, nanowires, nanorods, nanobelts, ultrathin nanosheets and complex assemblies 

have been engineered, and exhibit better performance in LIB due to higher surface areas, more 

active sites and shorter ion diffusion paths [104]. MoO2/r-GO nano composite has been reported 

for making supercapacitors [105], and for environmental friendly and noble-metal free catalyst 

for electrocatalytic hydrogen evolution reaction [106]. Ultrathin Carbon layer-coated 

molybdenum dioxide nanoparticles are used in near-infrared photothermal cancer therapy [107]. 

Nanoscale MoO2 is of interest for important technological applications including catalysts for 

partial oxidation of hydrocarbons, solid oxide fuel cell anodes [108]. Reports for nano MoO2 

suggest high catalytic activity for the partial oxidation of Jet-A fuel with good resistance against 

coking and sulphur poisoning. It can also be used in development of internal reforming anode of 

Jet-A solid oxide fuel cell [109].  Carbon-supported molybdenum dioxide has been used in the 

oxidative desulphurization of thiophene [110].  
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Soluble ammonium heptamolybdate (AHM) [102] [111] or highly corrosive phosphomolybdic 

acid [112]  is widely used as a precursor for MoO2. Highly toxic ammonia is used on 

manufacturing of AHM and during its reduction, ammonia is again released. In this work, we 

demonstrate production of MoO2/r-GO nano composite using two different methods to 

demonstrate scale up.  

1. Nanogram scale: Reduction of GO deposited on Mo TEM grid 

2. Milligram scale: Reduction of GO and Mo blue solution  

Mo blue solution (MoxOy.zH2O) was prepared by reducing MoO3 solution (Molybdic acid) with 

Mo metal powder. The resulting Mo blue solution was mixed with GO. The reduction of 

GO/Molybdenum blue solution was achieved thermally at low temperature (650°), without using 

any toxic chemicals such as hydrazine and sodium borohydride, at high vacuum of 10-6 torr.  

Similar result was also obtained for in-situ annealing of this mixture deposited on nickel TEM 

grid inside TEM. 

8.2 Experimental methods 

8.2.1 Nanogram scale: Reduction of GO deposited on Mo TEM grid:  

GO (10mg/ml) synthesized by modified Hummers method was purchased from ACS nano and 

was diluted to 1mg/ml by adding de-ionized water. 2 μl of diluted GO (1mg/ml) was drop casted 

onto 300 mesh Mo TEM grid and dried in air, to form self-supporting, multilayered GO sample. 

In situ heating of sample was done using a Gatan tantalum-cup heating holder inside a Hitachi 

H9000NAR pressure TEM operating at an accelerating voltage of 300 kV, at a constant column 

pressure of 10-7 Torr. Gatan Orius SC CCD was used for capturing high resolution images, bright 
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field images, dark field images and selected area electron diffraction(SAED) patterns. Heating 

was done at the rate of about 30°C per minute up to 837°C. SAED patterns were taken at 

multiple regions at different temperatures to understand the effect of rise in temperature on 

sample and evaluate the variation over different regions. Bright field, dark field and high 

resolution images were also captured from different regions of the samples, after they were 

annealed at 837°C for 20 mins, and then allowed to cool to room temperature. Measurement of 

size of crystallites for Nanogram scale were also done by direct measurement using tool in 

Gatan's digital micrograph software. 

8.2.2 Milligram scale: Reduction of GO and Mo blue solution  

Molybdenum blue solution preparation:  

200 mg of sparingly soluble MoO3 powder (Sigma Aldrich) was mixed with 200 ml of de-

ionized water for a couple of days at room temperature and pressure. Clear solution (molybdic 

acid) was separated to another beaker and 100 gm of Mo metal powder (< 150 μm diameter) 

(Sigma Aldrich) was added to the molybdic acid at room temperature and pressure. Immediately, 

the solution turned blue and became deep blue in a couple of days. Finally, the solution (Mo 

blue) was also separated from Mo powder. 

10ml of single layered GO (10mg/ml) purchased from ACS materials and 20 ml of Mo blue 

solution were mixed uniformly by sonicating the mixture for an hour. The mixture was poured 

into 3 cavities of silicone "Slide Duplicating Mold" each 1" x 3" x 3/32" (Electron Microscopy 

Sciences). After drying the mixture at room temperature and pressure, thin and dark GO/Mo blue 

paper was obtained. The paper like sample was transferred to Alumina coated tantalum boat 
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(3" x 3/4" x 3/8"). The boat was heated (Joule's heating) at pressure of 10-6 torr, with constant 

rise of current of 1 amp/min from room temperature to 318°C (∼ 10℃/min), held constant for 

30 mins, then again constant rise in 1 am current, from 318℃ to 430℃ (∼ 6℃/min), 430℃ to 

520°C (∼ 5℃/min) and 520℃ to 693℃ (∼ 4℃/min) in 165 min in total. The current flowing 

through the boat and potential difference across it were measured to calculate temperature of 

boat and it was correlated to temperature measured from a radiation pyrometer above 550⁰C. 

Residual gas analyzer(RGA) was used to analyze gas released during heating. At about 183°C, 

masses of 12, 17, 18, 44 were detected until the temperature reached 318°C. At 318°C, there was 

a sudden burst of 12, 17, 18, 28 and 44 masses. The pressure increased from 3.6 x 10-6 torr to 

8.4 x 10-6 torr. At this point, the current and therefore temperature were kept constant (at 318°C) 

for half an hour, when the pressure returned to 3.6 x 10-6 torr, the current was again increased at 

constant rate. There was slight increase in pressure correlated of 12 and 44 masses after 348°C 

till 648°C.  

After reaching 693°C in 165 minutes, the current was terminated and the sample was allowed to 

cool. For TEM measurement, the heated sample of less than 1mm diameter was crushed with a 

mortar and pestle, and so formed powder was dispersed in methanol. A drop of mixture with 

methanol was dropped on 300 mesh Ni grid with lacey carbon and dried in air. For XRD and 

XAS measurement, remaining heated sample was crushed into powder and filled into amorphous 

glass capillary tube of length 10 cm and internal diameter of 1 mm. X-ray powder diffraction 

measurement was carried out near Mo-K edge (19.95 keV) using Pilatus 100k Detector and  X-

ray absorption spectrum (XAS) including X-ray absorption near edge structure (XANES) and 

Extended X-ray absorption fine structure (EXAFS) were measured around Mo-K edge (20 keV) 
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at beamline 12BM, Advanced Photon Source (APS) at Argonne National lab Chicago, IL using 

ion chambers (nitrogen filled) detector. For comparison, standard MoO2 (Sigma Aldrich) was 

spread on Kapton tape for XRD and XAS measurement. The small amount of crushed sample 

was also mixed with KBr to make pellet (2% concentration) for infrared measurement. 

Conversion of two dimensional SAED and XRD pattern were reduced into one dimensional by 

using Nika software [85]. Crystallites size for all samples were calculated from width of the 

diffraction peak obtained from electron and powder XRD, using Scherrer equation  𝒯 =
К𝜆

𝛽𝑐𝑜𝑠𝜃
. 

XAS data were processed by using Athena software and EXAFS data were fitted by Artemis 

software using theoretical standards from FEFF [86]. 

8.3 Results: 

8.3.1 Nanogram scale: Reduction of GO deposited on Mo TEM grid:  

Annealing of GO deposited on Mo grid inside TEM, at above 550⁰C formed graphene monoxide 

(GMO), which is described in detail in [113]. IR spectrum is also not different from that of 

reduced GO described in [113]. Unlike GO and GMO, which are uniform and have similar 

contrast, granulated three dimensional nanocrystals like structures are also formed on GO and 

Mo grid interface during heating above 600°C. Diffraction pattern due to graphene (in GO) and 

GMO are uniform rings as they are multi-layered randomly oriented planes. But SAED taken 

from GO with these embedded three dimensional nanocrystals (fig 62 c) are non-uniform rings 

composed of diffraction spots. Intensity of these diffraction spots dominates over diffraction 

rings of graphene which had previously existed before heating. High resolution imaging acquired 

from these three dimensional nano-crystallites are also reported in fig (64). Size of the visible 
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embedded nanoparticles measured directly from bright field image from fig (62 a) ranges from 

5-40 nm (50-130 Å).  

 

8.3.2 Milligram scale: Reduction of GO and Mo blue solution  

The heating of GO/Mo blue paper in alumina lined tantalum boat inside vacuum bell jar created 

a sample that was soft and highly electrostatic. The mass of sample was decreased from 200 mg 

to 50 mg after heating. TEM shows minute dark solid spheres like particles embedded inside GO 

film in bright field image (fig 65 a) and bright solid spheres like particles embedded in GO film 

in dark field image (fig 65 b). SAED done at the same part of the sample is shown in fig 65 c. 

Diffraction rings can be attributed to three dimensional nanocrystals formed during heating. 

Integrated line profile of SAED in fig 65 c is shown in fig 67. Integrated line profile of XRD is 

also shown in fig 67 and they are compared with XRD of standard MoO2. EXAFS of it is 

compared with EXAFS of standard MoO2 in fig 68. Similarly, XANES comparison is done in 

fig  69. Infrared spectroscopy of the material after heating shows presence of C=C planer 

stretching at 1560 cm-1 and epoxide group at 1200 cm-1 (Fig 70). Average Size of crystallites 

calculated using Scherrer equation is 52Å.  
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Figure 62: Nanogram scale: (a) Bright field image of GO with 3D nano-crystals embedded on it after heating it up to at 837 °C 

(b) dark field image from the same region (c) SAED pattern of GO, nearby Mo grid showing non-uniform diffraction rings 
formed due to polycrystalline 3D nanocrystals 

 

Figure 63: Nanogram scale: Integrated line profile of SAED of GO in Mo grid heated at 837 ℃ (Top) and integrated 

line profile of XRD of standard MoO2 at room temperature (bottom) 
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Figure 64: Nanogram scale: High resolution image of MoO2/r-GO nanocomposite showing crystallites of MoO2 embedded inside 
reduced graphene oxide. 0.34 nm and 0.24 nm are the spacing consistent to the spacing of lattice planes of MoO2 
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Figure 65: Milligram scale: (a), Bright field image of MoO2/r-GO composite transferred to Ni grid with lacey carbon showing 

dark spots due to formation of monoclinic MoO2 on r-GO film lying over lacey carbon at region one. (b)Dark field image of the 

region one with bright spots of MoO2, and (c) SAED taken around the region one, displaying almost uniform diffraction rings 
having spacing due to MoO2 crystals. 

 

-

 

Figure 66: Milligram scale: (a) Bright field image of the sample at region two and (b) SAED at the region two showing the region 

is a single crystal of hexagonal graphene. (c) Bright field image at region three and (d) SAED at the region three shows the 

formation of graphite (e) At region four, homogeneous distribution of tiny MoO2 crystallites in thin film of GO held on lacey 

Carbon of Ni TEM grid and (f) SAED from the region four showing diffraction due to graphene (Ring I and II) along with 

diffraction rings due to MoO2  



www.manaraa.com

 

126 

 

  

Figure 67: Milligram scale: Comparison of diffraction patterns of different forms of MoO2/r-GO nanocomposite with XRD of 

MoO2 standard. From top: XRD of milligram scale MoO2/r-GO nanocomposite, XRD of GO before heating, SAED of milligram 

scale MoO2/r-GO nanocomposite, and XRD of Standard MoO2. Peak Gc (3.65Å) is due to diffraction from interplaner spacing 

between graphene sheets, G I and G II are diffraction from graphene planes with spacing of 2.13 Å (100) and 1.23 Å (110) 
respectively. 

 

 

Figure 68: Milligram scale: Weighted Fourier transform of χ(k) of Standard MoO2 and milligram scale MoO2/r-GO 

nanocomposite showing similar peak in short range with small difference in position of peaks due to presence of GO in 

nanocomposite. Also there is absence of long range ordering in the nanocomposite. The first peak at 1.56 Å is due to scattering of 

photo electron wave by the 6 nearest neighbor oxygen in monoclinic MoO2, the second peak at 2.2 Å is mainly due to scattering 

of the wave from first Mo neighbor and the third peak at 2.7 Å is mainly due to the scattering of the wave from the second 
nearest Mo atom and the peak at 3.2 Å is due to 8 third nearest Mo atoms at 3.694 Å. 
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Figure 69: Milligram scale: Normalized XANES of milligram scale MoO2 showing similar features to that of MoO2 standard. 

Normalized absorption of Mo2C, Mo, MoO3, MoO2 and Milligram scale MoO2/GO from top to bottom. The plots are stacked 

along vertical axis. 

 

Figure 70: Milligram scale:  Absorbance IR spectrum of ex-situ heated Mo blue/GO in vacuum showing presence of epoxide 
group (1200 cm-1) and carbon- carbon double bond stretching vibration (1560 cm-1).  
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8.4 Discussion: 

8.4.1 Nanogram scale:  

Granulated nano structures observed in bright and dark field images in fig 62 (a) and (b) and 

strong diffraction rings composed of large number of diffraction spots (fig 62 c) with 

disappearance of two dimensional diffraction rings (spacing 2.13 Å (100) and 1.23 Å (110)) due 

to graphene present in GO) hints toward so formed granulated structures are pure polycrystalline 

and composed of highly scattering heavy element compared to carbon and oxygen which forms 

GO and GMO.  Integrated intensity profile of the SAED of the sample was compared with XRD 

of standard monoclinic-MoO2 is shown in fig (64). Granulated particles formed on GO/Mo grid 

interface were confirmed to be monoclinic MoO2. Diffraction rings spacing 2.13 Å and 1.23 Å 

belonging to graphene were absent in fig (62 c) and (64) because graphene oxide has very small 

domain of graphene in it and Mo ions present in r-GO/MoO2 nanocomposite are far stronger 

scatter of electron compared to graphene (carbon and oxygen) present in GO. Usually Mo metal 

is highly stable even at high temperature but in presence of air and water, it is oxidized. During 

in-situ heating, water trapped between layers of GO may have reacted with Mo metal of TEM 

grid. So Mo oxides are formed at the surface of Mo in grid and under reducing environment 

inside TEM, these oxides are reduced to crystalline monoclinic MoO2 at temperature higher than 

550°C. As temperature and duration of heating increases, more MoO2 crystallites were formed 

due to unlimited supply of Mo from the grid and hence, sharper diffraction due to MoO2 was 

observed.  
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8.4.2 Milligram scale:  

 Comparison of integrated line profile of SAED and x-ray powder diffraction of the sample with 

X-ray powder diffraction of standard monoclinic MoO2 and pure graphene oxide (fig 67) 

confirms the formation of nanocrystalline composite of monoclinic MoO2 with GO. This 

evidence of formation of monoclinic MoO2 is also supported by EXAFS analysis shown in fig 

(68) and XANES analysis shown in fig ( 69). Diffraction rings due to graphene are invisible 

because domains of graphene present in the sample are small and Mo atoms present in the 

sample dominate the scattering of incident electron waves. However, IR spectrum of the sample 

in fig (70) shows the presence of C=C group (1560 cm-1) and epoxy group (1200 cm-1) and it is 

very much similar to IR of reduced GO as described in [113]. This means, though diffraction is 

mainly dominated only by monoclinic MoO2 crystals, chemical composition of the GO is 

modified to reduced GO.  Mo blue has strong IR bands slightly different from MoO3 but so 

formed MoO2 after heating has very weak IR peaks and they are invisible in presence of IR 

bands of reduced GO.  

During thermal annealing, TEM results have shown some variation in the formation of products. 

At multiple regions, a single crystal of graphene was also observed (fig  66 a and b). Some GO 

has reduced to graphite (fig  66 c and d) and in some regions diffraction of reduced GO has 

dominated over MoO2 crystallites (fig  66 e and f).  

It is reported that GO is thermally unstable, and it starts losing mass (gas, water molecules) even 

at temperature below 100℃, the loss of mass peaks at 200-230℃ and 500-550℃ [114]. At 

226℃, mass loss is mainly due to ejection of CO, CO2 and steam accompanied by the huge 

expansion [115], whereas at 541℃ mass loss is due to pyrolysis of carbon skeleton of GO 
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takes place. Similar abrupt change in pressure were observed during annealing at 183℃ 

and 318℃ and RGA recorded the evolution steam (18), carbon dioxide (44) and carbon 

monoxide (28) gases. 

Mo blue, an amorphous oxide (MoxOy.zH2O) was prepared by partial reduction of MoO3 (VI) by 

Mo metal. As Mo blue is soluble and GO is hydrophilic, Mo blue was uniformly distributed in 

GO. Later it was dried, and when heated abruptly at low pressure, its molecules must have 

further reduced into MoO2 (IV) molecules at around 550°C in presence of reducing agents such 

as carbon and carbon monoxide evolved during thermal annealing. So formed MoO2 molecules 

aggregated to form nano-crystallites of MoO2 which can be evidenced by XRD and SAED 

integrated line profile shown in fig 67. However, EXAFS analysis (fig 68) says the nano-

crystallites of MoO2 have some defects as the position of peaks for them doesn’t exactly matches 

with that for standard MoO2, also the relative intensities of corresponding peaks don’t match and 

there is no long range ordering for these nano-crystallites.  

8.5 Conclusion:  

We demonstrated a simple approach to synthesize monoclinic MoO2 and r-GO nanocomposite in 

nanogram scale as well as in milligram scale, was evidenced by SAED measurement performed 

on nanogram scale and SAED and XRD done on milligram scale. In nanogram scale the Mo grid 

was used as precursor for MoO2 and heating is done inside TEM. In milligram scale the 

nanocomposite was obtained through solution based method using Mo blue solution as precursor 

for MoO2, followed by thermal annealing under similar conditions. Exactly similar results were 

obtained for heating a couple of micro-liters of mixture used for milligram scale in Ni TEM grid 
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inside TEM under similar condition. EXAFS done on milligram scale sample showed the local 

periodicity in MoO2 is short ranged of distance only around 3.5 Å. 
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Chapter 9 Concluding remarks 

During my research, I have been involved in learning different theoretical and experimental 

techniques. I have always focused myself on making new material having some practical 

applications. During that process, I have learnt different characterization techniques and applied 

them to characterize materials. I have worked mainly on reduction of GO, and GMO. I have 

listed some of my work I have accomplished as a part of my dissertation in this section. 

 

Making GMO inside TEM has been straightforward. It can be achieved by annealing GO in 

presence of Mo grid or soluble oxide of Mo oxide. Repeating similar result outside TEM for a 

larger quantity of GO under similar condition was hard to achieve. It was necessary to 

understand how GO behave with increase in temperature. Water molecules trapped between 

layers of GO, make it explode between 240-280℃ and another burst in pressure occurs between 

320-340℃ due to reaction of carbon and oxygen present in GO. It took several attempts and 

several months to make GMO in milligram scale but this experience was helpful in making 

another useful material, nanocomposite of MoO2 and r-GO. 

When GMO was first prepared inside TEM and it was detected by its characteristic two 

dimensional diffraction rings spacing 2.6 Å and 1.52 Å, there were some doubt that those 

diffraction rings may be due to some unknown oxide or carbide of Molybdenum material. Once 

we made larger quantity of GMO, we were able to use XRD, XANES and EXAFS 

characterization techniques. These techniques have confirmed that GMO is different from any 

oxide or carbide of Mo. Another strong evidence for existence of GMO is the outcome of 

GO/CrO3 experiment in which GMO is formed inside TEM by electron bombardment without 
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even using heat. The mechanism behind conversion of GO into GMO using different catalyst 

may be due to their high oxidizing power. Soluble oxides of Mo (MoO3 in solution or Mo blue 

solution) can be reduced at above 500℃. During reduction into MoO2, they produce highly 

reactive atomic oxygen. This atomic oxygen has enough energy to break bond between carbon 

atom in the plane of GO and form double epoxy bridge between two carbon atoms. In case of 

CrO3, energy is supplied by 300 keV electron beam which can enhance the catalytic reaction for 

the formation of GMO. 

Combining the outcomes of XRD and SAED, I have modeled the structure of GMO in 3D. 

According to the model, GMO crystals are not in fully relaxed state because each GMO layers 

are constrained to remain in randomly oriented layers with same spacing to that of its precursor 

GO. Due to this fact, the diffraction pattern obtained for GMOs during each synthesis have 

variations in their lattice parameters. 

Another product, nanocomposite of MoO2/r-GO is also of great interest as this material is a good 

candidate for making energy storage device. MoO2 due to its distorted rutile structure has 

metallic conductivity and r-GO is very much similar to graphite, which has been used in cathode 

of LIBs. r-GO has larger interplaner spacing than graphite, so it can accommodate larger number 

of Li ions than graphite between its space. Also MoO2 has higher theoretical specific charge. In 

addition, these nano composite have larger surface area compared to the volume which make this 

nanocomposite a good candidate for making anode for LIBs. Currently my group is working on 

this project. 
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